Bus Scheduling Manual: Traffic Checking and Schedule Preparation

August 1947
Reprinted July 1982

Bus Scheduling Manual: Traffic Checking and Schedule Preparation

August 1947,
Reprinted July 1982

Prepared by
Walter S. Rainville, Jr.
American Transit Association

This Version Cooperatively Produced by
American Public Transit Association
1225 Connecticut Ave. N.W.
Washington, D.C. 20036

Office of Technical Assistance
Urban Mass Transportation Administration
Washington, D.C. 20590
Technology Sharing Program
Office of the Secretary of Transportation
Washington, D.C. 20590

TRAFFIC CHECKING

AND
SCHEDULE PREPARATION

by
Walter S. Rainville, Jr. Director of Research American Transit Association

Amorican Transit Asoociation
292 Madison Avenue
Now York 17, N. Y.

This scheduling manual was developed through a cooperative effort of transit operators in the American Transit Association (ATA). It was a landmark effort and a valuable contribution to the transit industry. While scheduling practices have advanced significantly since its publication over thirty years ago, the manual is still in demand as a reference source. We believe this is a tribute to the operators who developed the manual and particularly to Walter Rainville, Jr., ATA's longtime Director of Research, who guided the project.

The text of this manual was made available courtesy of the American Public Transit Association, the successor to ATA. The actual distribution was done by the U.S. Department of Transportation.

Peter Benjamin
Associate Administrator
for Technical Assistance
Urban Mass Transportation Administration
U.S. Department of Transportation

Washington, D. C.

Le A viastondigi
Assistant Secretary
for Governmental Affairs
Office of the Secretary
U.S. Department of Transportation

Washington, D. C.

Background

This volume is viewed today as a classic reference on manual scheduling practices. It represents a comprehensive effort made over 30 years ago to pull together the state of the practice in this field, and many of those practices still remain valid today.

Because of the classic nature of this reference, it is being reproduced unchanged from its original edition. Operators today should note that some of the technological references in the original volume are dated, and that the advent of hand calculators, data management systems, and microcomputers may have facilitated some of the processes described. These areas in the report should be fairly easy to recognize.

The continued utility of this report stems from the excellent efforts made by Walter S. Rainville, Jr. The contributions of Arthur E. Kern, now with New Orleans Public Service, Inc., should also be recognized and applauded.

The Urban Mass Transportation Administration (UMTA) has attempted to build on this effort. One of the early products of this work is RUCUS, a computer-based RUn CUtting and Scheduling package. UMTA is continuing to develop other such tools. For further information, contact Mr. Brian McCollom of the UMTA Office of Methods and Support, URT-41.

This study, designated as Research Project \#6 - "Traffic Checking and Schedule Preparation", has been sponsored by the Operations Division and undertaken, upon approval by the Board of Directors, as part of the A.T.A. Research Program for the Association year 1946-47.

ADMINISTRATIVE COMMITTEE, OPERATIONS DIVISION, 1946-47

W. E. P. Duncan, Chairman, Chief Engineer, Toronto Transportation Commission, Toronto, Ontario, Canada.
H. G. Morris, Vice-Chairman, Vice-President, United Electric Railways Company, Providence, R.I.
Keneth M. Hoover, Immediate Past Chairman, Assistant to President, Philadelphia Transportation Company, Philadelphia, Pa.
A. C. Hough, Superintendent of Traffic, Pittsburgh Railways Company, Pittsburgh, Pa .
Donald H. Walker, Vice-President in Charge of Transit Operations, Indiana Service Corporation, Fort Wayne, Indiana.
W. W. Harris, Manager, Delaware Coach Company, Wilmington, Del.
J. H. Lucas, Vice-President, The Milwaukee Electric Railway and Transport Company, Milwaukee, Wis.
Donald C. Hyde, General Manager, Cleveland Transit System, Cleveland, Ohio
Arthur W. Baker, Secretary, General Secretary, American Transit Association, New York, N. Y.

RESEARCH ADVISORY COMMITTEE, "1946-47

Dean J. Locke, Chairman, Staff Engineer, Capital Transit Company, Washington, D. C.
John Gerson, Manager of Transportation, Georgia Power Company, Atlanta, Ga.
F. Norman Hill, Division Manager, National City Lines, St. Louis, Mo. Joe R. Ong, Director of Research, The Cincinnati Street Railway Company, Cincinnati, Ohio.
Robert H. Stier, Vice-President-Operation, Philadelphia Transportation Company, Philadelphia, Pa.
Donald H. Walker, Vice-President in Charge of Transit Operations, Indiana Service Corporation, Fort Wayne, Ind.
C. W. Wilson, Research Manager, Pittsburgh Railways Company, Pittsburgh, Pa.
Walter S. Rainville, Jr., Secretary, Director of Research, American Transit Association, New York, N. Y.

This research project was suggested during 1946 by Mr. R. N. Graham, President, The Youngstown Municipal Railway Company, Youngstown, Ohio. It was considered by the Administrative Committee of the Operations Division of the Association on October 9, 1946, at which time it was decided that the Operations Division would sponsor the study and refer the subject to the Research Advisory Committee for consideration as a potential research project. On January 9, 1947 the Research Advisory Committee approved the project as one suitable for undertaking by the Association's Director of Research, and requested the Exccutive Manager to convey its recommendation to this effect to the Board of Directors with the request that the Board approve the project for study. The Executive Committee of the Board of Directors gave its approval of the project on February 21, 1947.

Objectivos

This project has the following basic objoctives:

1. The preparation of a comprehensive report on procedural methods for traffic checking and schedule preparation in the transit industry for distribution to the member companies of the Association.
2. The investigation of methods for checking the efficiency of schedules.
3. The development of new and improved techniques in the field of traffic checking and schedule preparation.

Scope

The project embraces a complete coverage of the schedule-making process from start to finish, including:

Fundamental Controls
Passenger Load Checks
Running Timo Checks
Headway Specifications
Preparation of Timetables
Cutting of Runs
Assignment of Runs
Measurements of Schedule Efficiency

Plan of Study

The study has beon divided into four parts:

$$
\begin{aligned}
& \text { Fart I: A Sample Procedure for Traffic Checking and } \\
& \text { Schedule Proparation. } \\
& \text { Part II: A Survey of Current Industry Practices. } \\
& \text { Part III: An Industry Symposium on Traffic Checking and } \\
& \text { Schedule Proparation. } \\
& \text { Part IV: A Report on the Development of New and Improved } \\
& \text { Techniques in the Ficld of Iraffic Checking and } \\
& \text { Schedule Preparation. }
\end{aligned}
$$

Part I has been designed to meet the needs of those properties which have had little or no experience with systematic traffic checking and schedule preparation. An cffort has been made to prepare a clear, complete and comprehensive exposition of the procedures involved, with sufficient detail to permit these procedures or similar ones to be adopted if they should prove to meet the need of an individual property. The proceduce set up for explanation has been based upon the method used by one representative transit company. This method has been selected solely for purposes of illustration, and does not purport to be the best method or a standard mothod. It is simply portrayed as one good; practical method which has been used successfully by a representative transit property over a long period of years. Parts II and III will include alternative methods and procedures for the various steps of the schedule-making process, so that the reader may have the benefit of a choice as to the mechanics of the problcm and as to points of view relating to policy in this field.

PART II has boen designed to provide the member companies with up-todate information on traffic chocking and scnedule-making procedures on the various properties which make up the transit industry. It will cover broad principles and policios as well as tho dotails of form, frequency, procedure, etc. This portion of the study will be developed from replies to a comprehensive and specially designed questionnaire to be sent to all operating company members. The results will be sct up in tabular summary form to the maximum extent possible. A copy of this quostionnaire will be included in Appendix A of Part II. (Part II will be distributed when completed.)

Part III has been designed as a complement to and modifier of Part I in order that the member companies might have the benefit of differing viewpoints with reference to policy and procedure in the individual phases of traffic chocking and schedule preparation. In the collection of this symposium the sample procedure, Part I, will be made available to from threc to five specialists in each phaso. Each of these specialists will be asked to present his comments on the sample procedure and to give the policies and practices of his own company with respect to his particular phase of the problen. This part of the project, in combination with Parts I and II, should provide the member companies with a rather complete resume of the best thinking and
practice in the industry. (Part III will be distributed when completed.)
Part IV has been approved by the Executive Committee, but detailed plans for its execution have not yet been made. The need for investigation into and the development of new and improved techniques for traffic checking and schedule preparation should logically evolve from the process of setting up Parts I, II and III, which cover the manner in which schedules are made at the present time. The problems encountered by the companies should serve as a guide to the specific fields of invostigation which should be undertaken. As presently contemplated, this portion of the study would be directed towards finding better ways of getting at the fundamentals of a schedule, such as (l) breaking down the operation into time and motion studies as an approach to fixing schedule speeds, (2) investigating such "short cuts" as might be employed, and (3) detormining the degree to which the schedule-making process can be mechanized.

A SANPLE PROCEDURE FOR TRAFFIC CHECTING AND SCHEDULE PREPAFATION

Acknowledzment

The sample company whose traffic checking and schedule making procedures have been described herein has asked that it be allowed to remain unnamed. This request will be observed, but not without regret, as this procedure prevents giving proper credit to the company and to the individuals associated with it whose cooperation and efforts have made Part I possible.

Much of the material was taken from a former lecture course on schedule-making procedure which was taught to the company's schedule department employees, transportation supervisors and vehicle operators some few years ago. Large portions of the material have been taken verbatim from the company's manuals and lecture notes. Chapters V, VI, VII and VIII have been written after following closely the detailed verbal explanations of the respective processes by various employees of the company's Schedule Department.

The assistance and cooperation rendered by the sample company and its employees is gratefully acknowledged.
W.S.R.

NOTE

Wherever the terms "the sample company" and "the company" are used in the text, they refer to the company whose traffic checking and schedule making procedures are under study in this report.
Page No.
CHAPTER I. INTRODJCTION 1
A. Importance of Transit Schedules 1
E. Tests of a Good Schedule 4
C. Classification of Schedules 5
D. Schedule Changes 6
E. The Company Whose Method Is to be Described 7
F. Basic Control Data 10
G. Preliminary Considerations 18
CHAPTER II. PASSENGRR LOAD DATA 23
A. Importance of Passenger Load Data 23
B. Maximum Load Point 23
C. Information Required 23
D. Checking Form 24
E. Detail of Procedure 24
General Instructions to Load Checkers 24
General Duties 24
Checking Record 24
Venisle Arriving Time 26
Counting Passenger Load 28
Checking Location 28
Checking Assignments 29
Checking Hours 29
Conduct 30
Checker's Accuracy Test 30
F. Frequenci of Checks 30
G. Sumnarization of Passenger Load Data 34
CHAPTER III. RUNNING TITI DETA 38
A. Importance of Running Time Data 38
B. Time Points 39
C. Information Required 39
D. Checking Form 40
E. Detail of Procedure 40
General Instructions to Running Time Checkers 42
Principal Duties 42
Checking Assignments 42
Data Furnished to Checkers 44
Checker's Preparation Before Riding 44
General Checking Procedure 44
Grading Speed 45
Tally Sheet 46
Tiscellaneous Instructions 46
Page NO_{2}
F. Frequency of Checks 48
G. Summarization of Running Time Cheok Data 49
Running Time Periods 49
Segregation of Abnormal Checks 50
Riding Check Summary Form 50
Running Time Adjustment Form 50
Averaging Running Time Check Data 53
H. La:yover, Recovery or Headway Adjustment Time 57

1. Preparation of Running Time Sheet 59
Comparison of the Running Time Summary Sheet with the Schedule in Effect 59
Preparing the Running Time Sheet 59
Mijleage Data for the Running Time Sheet 61
Calculating Speeds 62
CHAPTER IV. TYE HBADYAY ORDER 53
A. Importance of the Headway Specification or Order 63
B. Scurces of Information 63
C. Loading Standards 65
D. Headway Crder Sheet 67
W. Procedure for Ca?culating Headway and Changes in Headway 70
F. Freparing the Headwey Specification 71
Early A. . Period 76
A. Deak Period 76
Basic Period 78
Pin。 Pea: Feriod 79
Parly pight Pericd 81
Inte fight and "OwI" Periods 81
Goneral 82
G. Hffect of "limitira Headways" 82
CHAPTER V. THE TERIIMAI STEET 84
A. Importiance, Value and Uses of the Terminal. Sheet 84
B. Sources of Information 84
C. Form of the Terminal Cheet 8.6
D. Procedurc for Setting U_{i}, the Terminal Layout Sheet 86
E. Procedure for "Shifting" Trains Prior to Run Cutting 102
F. Completion of the Tominal Sheet 111
G. Final Form of Terninal Sheet 113
CPAYTER WI. OUT CUMTIMG 114
A. Importance of Run Outting 114
P. Controllins Factors 114
C. Obicctives of the Schodule inker in "Cutting Up" a Scherule 116
D. The Subdivision Sheet 117
E. The Run Cut Sheet 123
Left-hand or "Early" Side of Sheet 125
Right-hand or "Late" Side of Sheet 126
Listing Remaining Trains 127
Trippers 128
"ratching" Trains 129
"Raking" the "Cut" 131
Calculation of Spread Time and Pay 134
Swapping of "Pieces" to Reduce Spread Pay and to Decrease "Allowed" Time 135
Equalization of Runs 139
Completion of the Run Cut Sheet 141
F. Graphic Illustration of Run Cutting 146
G. Comparison of the Run Cut Described Above with Other Cuts of the Same Schedule 148
H. General Observations on the Cutting of Runs as Practiced by the Sample Company 157
CHAPTER UII. DISTRIBUTION OF SCHEDULE INFORMATION 165
A. The Run Sheet 165
B. The Assignment Sheet 166
Picking of Runs 166
Grouping Runs into Six-Day Assignments 168
Procedure for Determining "Days Off" 169
Policies to be Observed in Assembling Assignment Sheets 170
Procedure for Setting Up the Assignment Sheet 172
Tuesday-Friday Schedule 174
Mifonday Schedule 177
Saturday Schedule 179
Sunday Schedule 180
Checking the hssignment Sheet 181
Copies of hssignment Sheet 183
C. The Terminal Sheet 185
D. The Run Guide 185
E. Comparative Statement 189
F. Recapitulation of Schedules 191
G. Schedule Information for the Riding Public 193
CHLPTER VIII. WGSSUREMENT OF SCHEDULE EFFICIENCY
BY THE SUTPLECOMPNY 195
ARPENDIX A. GLOSSGRY OF SCHEDULE TERMS USED
BY Sh PLE COMPAHY UNDER STUDY 199
APPENDIX B. UETHOD OF MKING SCHEDULE "CHANGES"
SGIPLE COMPANY UNDER STUDY 207

CHAPTER I. INTRODUCTION

Figure Page
No. No.

1. Organization Chart of the Schedule Department 11
2. Schedule Development Chert 13
3. Daily Comparative Statement of Passenger Revenue 15
4. Summary of Data from Daily Comparative Statement 16
5. Typical Line Chart of Control Data 17
6. Chart Showing Relative Importance of the Various Days of the Week 19
7. Typical Route Map 21
8. The "Survey Footometer", Device for Measuring Route Distances 22
CHAPTER II. PASSENGEP LOAD DATA
9. Passenger Load Checking Form 25
10. Determination of "Even Minute" and "Half Minute" from Second Hand Dial 27
11. Checking Assignment Form 31
12. Load Checker's Accuracy Test Form 32
13. Record of 18-Hour Passenger Load Checks 33
14. Recapitulation of Passenger Checks, or Load Check Sunmary Sheet 35
CHAFTER III RUHNING TIME DATA
15. Running Time Check Form 41
16. Typical Terminal Sheet 43
17. Riding Checker's Tally Sheet 47
18. Running Tine Summary Sheet 51
19. Running Time Adjustment Sheet 52
20. Data on Stop Frequency and Duration Derived from Running Time Checks 55
21. Riding Check Summary Sheet 56
22. Running Time Sheet 58
23. Pencil Copy of Running Time Sheot 60CHAPTER IV. THE HEADWAY ORDIR
24. Daily Switching Report 64
25A. Headway Order Sheet (Early Half) 68
25B. Heaãway Order Sheet (Late Half) 69
25. Passenger Load Summary Sheets - Inbound. Portions of Sheets. \#1, \#2 and \#3. 73
26. Passenger Load Summary Sheets - Outbound. Portions of Sheets \#4, \#5 and \#6. 74
27. Passenger Load Summery Sheets - Outbound. Portions of Sheets \#7 and \#8. 75
Figure Page
No. No.
28. Completed and Typed Terminal Sheet 85
29. Steps \#l-7, Preparation of Terminal Layout Sheet 87
30. Steps \#8-15, Preparation of Terminal Layout Sheet 89
31. Steps \#l6-25, Preparation of Terminal Layout Sheet 91
32. Steps \#:26-32, Preparation of Terminal Layout Sheet 93
33. Steps \#33-35, Preparation of Terminal Layout Sheet 96
34. Steps \#36A, B \& C, Preparation of Terminal Layout Sheet 98
35. Step Fil 2, Preparation or Terminal Layout Sheet 101
36. Partially Completed Terminal Layout Sheet 103
37. "Shirting" the Terminal Layout Sheet 105
38. Partially Completed Terminal Sheet 108
39. Completed Terminal Sheet 110
CHAPTER VI. RUN CUTTING
40. The Subdivision Shert 118
41. (Preliminary) Run Cut, Sheet 122
42. (Auxiliary) Subdivision Sheet 124
43. (Auxiliary) Run Cut Shect 137
44. Completed Run Cut Sheet 142
45. Typed Run Sheot 145
46. Giraphic IIlustration of Run Cut 147
47. Graphic Analysis of Individual Runs 149
48. Comparative Run Cut Sheet \#ly (Figure 49 ve. 45) 150
49. Conparative Run Cut Shect "2 (Figure 50 vs. 45) 152
50. Comparative Run Cut Shect \#3 (Figure 51 vs. 45) 154
51. Bus Operatnrs' Preferences for Various Types of Runs 156
52. Number and Percentage of "Preferable" Runs 158
53. Avorage Longth of Runs 160
54. Porcontage of Straight Runs 162
55. Percontage of Preferable Runs to Total Runs 164
CHAPTER VII. DISTRIBURION OF SCHEDULE INFORMATION
56. Preparation of Assignment Sheet 173
57. Typeri Assignment Sheet 182
58. Run Guide Sheot 184
59. Comporativ Schedulc Stetement 187
60. Mileage Record Sheet 188
61. Recreitulation of Schediules 190
APPENDIX B. METHOD OF MAKING SCHEDULE "CHANGES"
62. Segment of Passefnger Load Summary 208
63. Schodule Charge "Work Sheet" 211
64. Typod Iotice of Schedule Change 2.14

A SAMPIE PROCEDURE FOR TRAFFIC CHECKIVG AND SCHEDULE PREPARATION
CHAPTER I

INTRODUCTION

There are perhaps no more important elements of transit operations than the functions of traffic checking and schedule preparation. The comfort and convenience of the public, the compensation and working conditions of company employees, and the economic welfare of the company itself are all directly and significantly affected by transit schedules.

For this reason, the money spent for the establishment and maintenance of an adequate schedule department is usually considered money well spent by alert transit managements.
A. Importance of Transit Schedules

The operation of urban transit service in accordance with scientifically predetermined schedulos is of the utmost importance to the riding public. The confort and convenience experienced by the transit patron in availing himself of the service is in large measure dependent upon the skill and care with which schedules have been prepared, and the degree of conformity to these schediles which the operating department is able to achieve in the public streets.

Schedules prescribe the anounts of service which should be operated during different periods throughout the day; in accordance with the corresponding amounts of passenger traffic to be moved. Thus, they insure that ample service will be provided in accordance with the variation in need for service throughout the day. Schedules determine the average load which each vehicle on a route shall corry. Where schedules are adequate and headways (the intervals between vehicles) are properly maintained, the passenger experiences a degree of both convenience and comfort. Where headways are too long with respect to the load to be handled, or where irregular headways result from poor scheduling or improper operating practices, crowding results on some of the vehiclas with consequent impairment to the comfort of the patron.

Schedules determine the headway intervals between vehicles for different periods of the day. Thus, schedule-making is intimately associated with the length of time which the passenger has to wait at the curb for a transit vehicle. Theoretically, the average patron waiting for a vehicle has to wait for a length of time equal to one-half the headway. Care must be taken to keep these intervals short enough during the poak periods of the day to provide for the moverent of the volume of business which presents itself. These intervals must be sufficiently short at other periods of the day and night so as not to discourage patronage.

Schedules prescribe the time required by vehicles on a route in moving patrons from onc point to another. Any speed less than the full speed which can be accomplished with safety at any given time of the day consumes unnecessarily somo portion of the passenger's time. The patron is, therefore, directly offected by the efficiency of scheduling from the standpoints of speed and
running time.
Schedules are important to the company's operating personnel for many reascns. In the first place, they prescribe the average load which each vehicle should carry. When improper or irregular headways occur in the actual operation of vehicles in the streets because of some inadequacy of scheduling, some of the operators or crews are required to do more than their fair share of the work of transporting patrons.

Schedules prescribe the working hours of each vehicle operator. In the absence of definitely scheduled working hours, all operators would be subject to call at any time, and their working conditions would be somewhat similar to those of operators designated as "extra men". Under the scheduling process, each regular operator has a definite assignment with a definitely scheduled starting time and finishing time.

Schedules permit vehicle operators to select the types of runs which they best prefer, in accordance with their prescribed seniority rights. Schedules also prescribe the exact:amount of wages which cach operator receives for regular work and extra work.

Schedules are important to the transit operating company because they form the basis for the orderly conduct of the company's operations. They enable the company to place the service where it is needed and where it will do tho most good. The operation of vehicles at irregular or inadequate intervals, their operation at time-consuming speeds, and the provision of an inadequate number of vehicies to handle traffic would produce a service unattractive to patrons, and, therefore, one which would not produce the most revenue for the company.

Schedules are helpful to the company because they constitute a specification for the operation of the service in the public streets. With a theoretical pattern for the service leid out on paper in a systomatic manner, supervision can be intelligently applied by the transportation dopartment in conducting actual operations. The times at which vehicles should pass certain "time points" in order to make the service of maximum usefulness to the public are definitely set forth in the schedules, and deviations from these times can be observed by* the supervisory personnel and correctivo moasures suggested. Sometimes upon invostigation these corrective measures involve a change in the schedule itself. At other timos, howover, it is necessery that the vehicle operator be instructed or disciplinod for his failure to observe the schedule or for some defect in his working procedure. Having a dofinitely prescribed operating plan, as ropresented by the schedulo, makes such instruction or discipline easicr to apply.

Since the working conditions and the limitations of the individual pieces of work are definitely known and understood by all parties, transit probably attracts a somewhat highur class of labor than that which would be content with a type of work in which the individual job is less clearly defincd.

The most significant aspect of tho schedule-making process from the company viowpoint is that concorned with costs of operation. Most of the elements of oost in tronsit operation are associated with the amount of sorvice operated. This is porticularly true of the platform labor cost, which is the most important single item of expense. Table I shows platform labor costs in relation to operating revenues and operating expenses for transit operations in the United States. This table indicates that a substantial percontage of the industry's income and

TABLE I

PLATFORM LABOR COST
In REIATION TO

- OPERATING REVENUE AND OPERATING EXPEINSES*

YEAR	$\begin{aligned} & \text { OPERATING } \\ & \text { REVENUE } \\ & (\$ 1,000) \\ & \hline \end{aligned}$	OPERATTING EXPENSES$(\$ 1,000)$	PLATTORM \# IABOR COST (\$1,000)	PER CENT PLATFORM IABOR COST TO	
				$\begin{aligned} & \text { OPERATIIVG } \\ & \text { REVENUE } \end{aligned}$	OPERATING EXPFNSES
1932	\$696,490	\$562,850	\$160,200	23.0	28.4
1933	642,400	502,420	142,40*	22.2	28.4
1934	674,900	525,490	152,100	22.6	28.9
1935	681,400	534,930	153,000	22.5	28.6
1936	727,900	565,180	164,200	22.6	29.0
1937	733,500	588,680	173,000	23.6	29.4
1938	700,800	579,690	174,300	24.9	30.1
1939	720,700	586,600	179,500	24.9	30.6
1940	737,000	598,030	183,900	24.9	30.7
1941	800,300	644,260	198,400	24.8	30.8
1942	1,040,000	769,390	247,000	23.8	32.1
1943	1,294,000	932,970	301,100	23.3	32.3
1944	2,362,300	1,012,070	325,000	23.8	32.1
1945	1,380,400	1,067,140	340,100	24.6	31.9
1946a	1,397,100		384,000	27.5	-

* For transit operations in the United States.
\# Wages of Motormen, Conductors, One-Man Car Operators, Bus Drivers and Trolley Coach Operators.
a. Tentative Estimate
expenditures is required to defray the wages of vehicle operators.
Because of the importance of platform labor cost and other elements of "service" cost in determining the over-all results of transit operation, it is extremely important that the management provide the exactly correct amount of service on the streets for its patrons. On the one hand, there gust be sufficient service available to hold and attract patronage. On the other hand, the effects of the direct costs of operation make it essential that no more service be operated than that absolutely necessary. Schedule malking, when correctly done, is an orderly process for determining the correct amounts of service to be operated, and the times of day and other conditions surrounding their operation so that the service may be rendered in the most effective manner. Inadequate, sloppy operation or inefficient scheduling gencrally result in more vehicles being used than necessary, with consequent waste of service and the inefficient expenditure of the operating cost dollar. Lack of scheduling, or poor scheduling, with resultant high operating expenses and rovenues less than a possible maximu, diminishes the possibility of a company's earning an adequate roturn on the investment in transit facilities. Proper attention to traffic checking and schedule preparation, on the other hand, tend to assure present investors in the property that the management is doing cverything in its power to obtain the maximum of transit riding with the minimum of operating oxpence in rejation thereto. This tends to make the securitios of the operating company in question more attractive to present and prospective future investors, and thus insures a flow of needed capital to the transit company.
B. Tests of a Good Schedule

The question of "what constitutes a good schedule" has apparently not yet boen solved to the satisfaction of the transit industry. This statement is based upon observation of some leading transit men having wide experience and roputation in the field of traffic checking and schedule preparation, who during the past year have been seeking ways by which company managements can measure schedule efficiency. If men of this caliber are at a loss to know what the measures of schedule officiency are, this phase of the problem undoubtedly furnishes a fertile field for research.

Some of the tests of a good schedule are, of course, obvious. The average load por vehiclo during poak hours, for example, should check closoly with the prescribed loading standard. Base, night and other off-peak headways should not be too long. Operating spoeds should be as high as possible, consistent with safety. These three testa might well be applied by the public although the company itself has a heavy interest in the first one. Perhaps the transit patron would consider a good schedule to be one which provided every passenger with a seat during the peak persod. This, of course, would not constitute a good schedule from the standpoint of the operating company, because transit managements universally know and understand that it is economically impossible to provide a seat per passenger during rush hours.

The operating personnel of a company would perhaps apply different tests to a schedule in order to determine whether it should be classified as good or bad. Operators would, for example, consider a good schedule to be one which included a high percentage of regular runs. Other tests of a good schedule from the standpoint of the operating personnel might be that it include a high percentage of straight day runs; that it involve very few late "reliefs";
and that the relief time either be as short as possible, or that it be long enough to permit the relieved operator to go home for meals with sufficient time.for his return to the job. The operating personnel might also classify as "good" a sohedule which includes a large number of high-paying runs, or one with slow running time and a long layover on each trip.

Perhaps the most obvious test of the efficiency of a schedule from the standpoint of the operating company would be that the cost of the schedule be as low as possible. This test would, however, have to be applied with, a realization that the schedule should not be cut so closely that it would trend to discourage profitable patronage.

Because of the importance of this question of tests of a good schedule and manacerial measurements of schedule efficiency, the Administrative Committee of the Operations Division specified, when undertaking the sponsorship of this project, that it include, in addition to traffic checking and schedule preparation, a study of methods for checking the efficiency of schedules. Provision has been made for the appointment of a Research Project Committee to investigate measures of the efficiency of schedules and the schedulemaking process. The findings of this Project Comittee will be reported upon during the progress of this study.

C. Classification of Schedules

Schedules may be classified in many different ways. Perhaps the simplest classirication is that which is based upon the "kind of day." Thus, there are wreekday, Saturday, Sunday and holịday schedules. In some instances, the volume of passenger movement on various days of the work week is sufficiently different to justify the preparation of schedules for the several weokdays in order that maximum schedule economy may be achieved. Thus, there may bo a schedule for Monday only, coupled with another schedule for. Tuesday through Friday, another for Saturday, and still another for Sunday.

The anount of service operated on a Saturday would depend in large, measure upon the working habits of the community. The prevalence of a six-day work week as contrasted with afive-day work week in the locality would have its influence upon the Saturday schedule. A full work day on Saturday as opposed to a predominant 1:00 F.M. closing time would also have a pronounced effect upon the Saturday schedule.

Holidey schedules would be influenced by the number of holidays observed in the community throughout the year, and by the presence or absence of special events ot points along the transit system which might account for a significant amount of holiday riding. In many cases it is customary to operate the Sunday schedule on a holiday. Special schedulos are sometimes required to meet situations peculiar to the comunity, and in many instances scheduled special services are required to serve fairs, race tracks, and other special or omergency needs.

Schedulos may also be classified as "summer" schedules and "winter" sched-
ules. Such schedules would reflect the changes in volume of passenger business occasioned by seasonal changes generally, and by the effects of special seasonal activities on the riding of each line. The closing of schools luring the surmer months, the closing of stores and other business establishments at different hours in the surmer than in the winter, the outflow or inflow of large numbers of vacationors, would all, for example, have a pronounced offoct upon schedules.

Other classifications of schodulos may occur in specializod instances. The important thing to bear in mind is that there should be as many different kinds of schodules propared and operated throughout the yoar as will give the company the fullest opportunity to adjust the servicc to actual travel needs, in order that maximum oporating officioncy may bo obtained. It is a great mistake to prepare a set of schedules and to permit them to remain in offect indefinitoly without repeated checking and change as frequently as necessary to provide the maximum offective control over the expenditure of the platform labor dollar.
I. Schedule Changos

Thore are many reasons for making changes in schedules. Schedule changes moy be roughly divided into:

1. Normal or routinc changes;
2. Abnormal or "out-of-the-ordinary" changes.

Normal or routine changes are brought about by two general classes of causes. First, thoro would be routine changes in the schedule due to the variation in the total number of patrons handled on the line, that is, a change in the total volume of business, or in its variation according to time of day. Such variations become apparent through regular. and systematic load checking of the lines, and may bo due to changes in the goneral level of prosperity of the community, changes in omployment or working hours at manufacturing plants or commercial establishments, and changes in the riding habits of individual family groups due to the effects of the private automobile as an alternative means of travel. Then, there are the seasonal changes in the volume of business handled by a line and its time distribution. These have been briefly touched upon in the proceding section. Some of the seasonal changes are due to the closing of schools during the summer months. Others are dus to the closing of stores at different hours of the day during the vacation season, the effect of holidays, the migration of persons into or out of the city during the vacation season, and the movement of patrons from one location to another within the city during what might be tormed the "moving season". Under normal conditions this latter movement tends to balance itself somowhat as renters "swap" homes. It has perhaps not been a charactoristic of most cities in recent yoars owing to the acute housing shortage which has occurred as a corollary to World War II.

Abnormal schedule changes may rosult from several types of causes. They may be brought about by route changes due to partial or complete line abandonments, roroutings, the extension of lines, or tomporary interruptions resulting from street or other construction work. Changes in schedules may also result - in fact, should rosult, from a change in the size or type of vohicle used. A change in the size of vehicle should bring about an automatic change in the schedulc because of the difforent seating capacity and standee capacity charactoristic of the now vehicle. A change in the type of vohicle usually affects the "schedule-ability" or performance charactoristic of the equipment from the standpoints of its rates of acceleration and breaking and its speed characteristics. Some types of vehicles havo been found to be "under-powered" and others have been found to be "over-powered" with respect to the total load to bo handled at any time. These factors all have their effects upon operating performance. In tho case of strect car operation a change in equipment as to the number cr size of motors, type of control or air breke equipment, a change in the setting of current limit rolays, or a pronounced change in lino voltago may be sufficiont roason for redetermining running times and preparing new schedules. Among the external factors of an abnormal nature might be
included the competitive effect of a change in rates charged by taxicabs, or a change in street traffic conditions. These are all causes for an examination of existing schedules and possible schedule changes.

The alert schedule dopartment will keep itself fully informed as to such causes for schedule changes as may exist or may present themselves during the course of operations. A general knowledge of what is taking place on the systeri, together with a program of systematic load and running time checks, should be of tremendous help in pointing the way toward temporary or permanent economies from the operating cost standpoint.

In the company which has been selected for the purpose of presenting this sample procedure, the following steps will have already been undertaken as a matter of systematic and regular routine before schedules are changed:

1. The line is checked for passenger load, in order to measure the effectiveness of the schedule currently in effect.
2. The line is checked for running time, in order to determine whether the time allotted between time points is correct for the various periods of the day. (This check is sometimes omitted.)
3. The line is checked for incompleted scheduled trips. An analysis of what are called the "switching reports" is made to determine whether the incompleted trips are due to an inadequacy of the schedule or to other causes.
4. The line is checked for its trends in revenue, revenue per vehicle hour, total passongers and total passengers per vehicle hour. Detailed charts of these and other statistics are posted frequently in order that the schedulc department may be constantly informed of these trends.

E. The Company Those Method Is to be Described

During the early stages of this project a corplete revicw was made of material on traffic checking and schedule preparation in the ATA library, including reports of the work of past committees. This review indicates that there has been and now is a demand for a comprehensive manual on traffic checking and schodule preparation, but that no such comprehensive treatise on the subject complete from stert to finish - has ever been prepared. Some few individual aspects of this broad ficld have had comprehensive expert attention.

In roviewing the past material, it seemed apparent that the usual history of each attompt to produce a comprehensive work in this field ended when the comraitteo group conducting the study got into controvorsial issues, such as which company among those represented on the committec had the best method for handing some particular phase of the subject. In other instances a comittec may have felt itself handicapped by a lack of standard definitions for terms used in connection with transit operations and schedule making. In such cases considerable attention was usually given to the problem of trying to stendardize definitions, and the central objective of putting something together on proceduros for traffic checking and schodule preporation was lost in the atternpt to reduce the terms used by various companies in the industry to a common denominator. In still other instances, cominttecs made considerable progress until they came to the subject. of "run cutting". At this point the
grat difforences betweer tho calculated schedule vehicle niles, vehicle hours and platform labor costis for a given condition of traffic flow resulting from the greatly varied wage: rates and working conditions obtaining on the individual propertios secmed to give rise to an impasse. At such times tha generally epcopted procedure seomod to be to set up a hypothetical route of given physical and paissenger traffic characteristics, and to ask each company represented on the comittee to propare schedulus, including run cuts, in accordance with tho terms and conditions of their individual labor contracts. This process produced much interesting information on the subject of the offect of wages and working conditions upon resultant schodule figures, but did not result in setting dow for the guidance of the student of schodule making a procodural mothod which could be followed in obtaining the desired result under the one set of wage rates arid working conditions with which he might be working.

The first objoctive of the current project is to prepare an exposition, as clearly and as quickly as posaible, of the principles and procedures involved in the functions of traffic checking and schedule preparation for the information of all member companies, large and small. It should be possible to attain thfis objective regardless of the diversity of wages and working conditions, the diversity of opinions on tho subject, and the unstandardized nomenclature which characterize the industry.

In ordor to provide such an exposition of the traffic checking and schodule making procoss, it was decided to select one representative transit property and to explain in full working dotail the processes used by that property. In this way a cormlete and continuous picture of the schedule making procesc from start to finish can bo set forth. The terms and definitions peculiar to the property under study havo been included in Appendix A to Part I for the information of the student of this report, and it should be possible for him to identify from the information given the various fundamental elements of the problem, regardiess of the names by which they may be callod on his own property. In this way the needs of those properties which have had little or no experience with systematic traffic checking and schedule preparation can be met, without getting off into the "by-ways" of attempting to isolate the "one best" procedure, or trying to produce a standordized nomenclature for the industry. The complementary and modifying matorial planed for Parts II and III of this project, coupled with the "rugged individualism" characteristic of the transit industry, will afford sufficient insurance: against this sample procedure being interpreted to be "the best", "a model", "a standard", or "an ATA approved" procedure.

At this point a brief description of the company whose method is to be usod as the "sample" in this study will be given.

Tho sample company has asked that it be allowed to remain unnamed. This request will be observod, but not without regret, as this procedure prevents giving proper credit to tho company and to the individuals associated with it who were responsible for furnishing most of the material upon which this part of the report is based. Much of the matersal was taken'from a former lecturo course on schedule-making proccdure which was taught to the company's schedule department employees, transportation supervisors and vehicle operators some few years ago, Large portions of the information have been taken vorbatim from the company's manuals and locture notes.

The company in question serves a population of 500,000 people. Its operation includes stroet cars, trolley coaches and motor buses:

| | Number of
 Routes | | Round Trip
 Route Mileage | |
| :--- | :---: | :---: | :---: | :---: | | Maximum Weekday |
| :---: |
| Scheduled Vehicles |

In the year 1946 this system handled 153,320,000 revenue passengers and 248,090,000 total passengers including transfer riders. In this same year $21,317,000$ vehicle miles and 2,123,000 vehicle hours were operated, with a platofrm labor cost of $\$ 3,477,819$. These figures give some idea as to the general characteristics and magnitude of the sample transit operation.

During the year 1946 a total of 554 separate schedules was built. These schedules are classified as follows:

Winter schedules	403	
Sunmer schedules	42	
Special schedules	34	
Total schedules	479	(actaally placed in offect)
Try-out schedules 1,	75	(for slecial studies)
Total schedules	554	(actuaily constructod)

In addition to the above, 575 minor schedule changes were made during the year.

In the sample company the Superintendent of Schedules reports to the General Superintendent of the Transit Department. This places him on a par with the Superintendent of Transportation, who also reports to the General Superintendent. This gives the Schedule Department a positive, independent control over expenditures for platform labor in a manner which is free from any dominance by, although it is cooperative with, the Transportation Department.

There are 17 employees in the schedule department of this company, 3 of whom are employed as load and riding checkers, the romainder being employed in the schedule department office. In addition to the above; the schedule dopartment makes use of as nany as 6 extra checkers, drawn from the ranks of the platform personnel, in the conduct of its normal program of systematic load and running time checks.

1/A "try-out" schodule, on the sample property under study, means a schedule for some currently non-existent situation, such as a projected future route or projected future size and type of vehicle, which has been constructed with all the care and attention given the preparation of an "actual" schedule; including the most economical runcut possible under the existing (or a contemplated future) labor contract.

The classification of schedule department personnel and the numbere of employees in each classification are given below:

Superintendent	1
Chief Schedule Maker	1
Schedule Makers	6
Schedule Typists	2
Schedulo Clerks	3
Stenographer	1
Regular Checkers	3

The organization of the schedule department of the sample company is dopicted in Figure 1. This chart includes (in dotted lines) the planning unit of the department, which comes under the suparvision of the Superintendont of Schedulos and Planning, but which does not enter dircotly into the routinc schedule-making functions of tho department. The total cost of the traffic checking and schedulo preparation function as performed in the calendar yoar 1946 by this deportment was approxirately $\$ 67,000$, excluding Suporintendance.

A brief general outline of the procedures used in the proparation of schodules on this property is shown in the Schedule Dovelopment Chart, Figure 2. This chart shows the elements of the schedule-making process, as well as the "flow" of steps in the proceduric for the sample company. A description of each of these elements will be given in succeeding sections of the report.

F. Basic Control Data

At this point the box marked "revenue trond charts" will be discussed in some detail. The company whose methods are being described herein is a firm believor in havine the schedule dopartment fully informed as to significant trends. Some of the background information covers a poriod of tronty years in the past, and is maintained in the form of tables. The most essential portions of this background material are carricd in chart form, and one employee of the department is charged with the responsibility of keeping thorse charts up to dato at all times.

There will bo listed below for the benefit of the student who is intercstod in background control data the types of information maintained by the company as control data in its schedule-making procese.

The following information is available in tabular form by years for each of the lines of the syster.t:

> Vehicle miles
> Vehicle hours
> Passenger revenue
> Revenue passengers
> Transfer passengers
> Total passengers
> Revenue per Vehicle mile
> Revenue per vehicle hour
SChedule and planning division

FIGURE 1.

Passengers per vehicle mile Passongers por vehiclo hour Rovenuo por passonger Ratio of transfer passengers to revenue passengers Spood in milos per hour Nuaber of units operated

In addition to these primary statistics, thero are availablo tabulations of the forcgoind data by lines for each year, with the lines arronged in the decreasing ordor of the magnitude of the figures. In this latter set of tabulations the figures for street car lines are show in black and the figures for the rubbor-tircd vehicle lines are shown in red, as the lines are listed in order of magnitude regardless of type of vehiclo.

Tho following data, which aro considered most essential as control data by the schodule department, are on charts. There is in each case a chart for the entire system, one for tho total of the street car lines, one for the total of the trolley coach lines, and one for the total of the motor bus lincs. In addition to thesc total and "sub-total" charts, thero aro separate charts for eack individual line. Tho charted information consists of the following:

> Vehicle miles
> Vehicle hours
> Pascencor revonue
> Total passengers
> Revonue per vehicle miles
> Revenue per vehicle hour
> Total passengors per vohicle milo
> Total pasecngers per vehicle hour
> Platform labor cost per vohicle mile
> Platform labor cost por vohicle hour

Because of the importance placed upon charted information of this type by the sample company, an illustration is included at this point. Figure 3 shows the daily comparative statement of passenger revenue by lines for the entire system. This statement affords a comparison with the same daj (not date) of a year ago with reference to passenger revenue, revenue passengers, transfer passengers, revenue miles, revenue hours, speed and revenue or "earnings" per car hour. This statemont is prepared by the Railway Earnings Department of the sample company and distributed to executives and interested departments on the day immediately following each day's business. Figure 4 shows a tabular sheat used for summarizing in the Schedulo Department the information taken from the daily comparative statement. The particular sample shown is the "weekday" sheet (Monday to Friday, inclusive) for the sample bus line which will be considered in this report. The daily figures of passenger revenue, car hours, and revenue per car hour are entered on tho sheet, and averages are computed for each "weekday" group of 5 days each. These weekly averages aro charted regularly on a form like that shom in Figure 5 .

SChedule development chart

FIGURE 2.

This chart shows a comparison for the current year with the year before as to revenue, hours and revenue per hour. The consistent increases in revenue and revenue per hour during the spring of 1946 over the corresponding values for 1945, together with the corresponding passenger load checks, pointed up the needed schedule change which is the subject of discussion at a later stage in this report. The effect of the schedulo change is increasing the amount of service on the street as measured by vehicle hours is reflected in the "hours". curve.

Special charts are also maintained in the schedule department which show the numbers of passengers entering and leaving the central business district by 15 -minute periods on the individual lines. Other charts of this type compare the current year against the previous year for a full day's business, including the base and night periods. These charts enable the schedulc department to follow the trend of the peak-base riding ratio.

The department also maintains a series of bar charts showing passenger revenue by lines and for the system by months. These are valuable trends in their uso as guides to schedule changes. Vehicle howrs and revenuc per venicle hour are similarly charted for the guidance of the Superintendent of Schedules.

A chart is also maintained which shows the daily average passenger revonue by years plotted as a line for each year according to the names of the days of the week. In other words, the vertical scale on this chart is in Dollars of Passenger Revenue and the horizontal scale consists of the names of the days of the weck evenly spaced, beginning with Monday and ending with Sunday. A line is plottod on the chart for each year showing the average daily passenger revenue for Monday, Tuesday, Wednesday, etc. A companion chart (Figure 6) is available which shows the daily average passenger revenue by weoltdays for each day of the weok over a period of years. In this case the vertical scale of the chart is in Dollars of Passenger Revenue, while the horizontal scale consists of a series of years. A line is plotted on the chart fow each day of the weok by name showing the average daily passenger rovenue for that day in each yoar. A third chart in this series shows the different days of the week evaluated as index figures, using the averagc of "Monday through Friday" as 100. A fourth chart is idontical with the third ono except that Saturday is included in a "Monday through Saturday" combination in determining the base average to bo used as 100.

This dotail has been given as a guide to the student who wishes to set up schedule control statistics, as well as to show the extent to which the sample company goes in keeping its schedule nakers fully informed as to tho behavior of transit riding on its individual routes.

FIGURE 3.

MONDAI TO PRIDAY INCLUSIVE 1946

APRIL						MAY						Juns					
Date	Revenue	Total Passengers	Car Hours	$\begin{gathered} \text { PAss. } \\ \text { P. С. } \mathrm{H} . \end{gathered}$	$\begin{aligned} & \text { Rev. } \\ & \text { P. C. } \end{aligned}$	DATE	Revenue	$\begin{gathered} \text { Total } \\ \text { Passengers } \end{gathered}$	$\begin{aligned} & \text { Car } \\ & \text { Hours } \end{aligned}$	$\begin{gathered} \text { Pass } \\ \text { P. С. } \mathrm{H} . \end{gathered}$	$\begin{aligned} & \text { REV } \\ & \text { P.C. } \mathrm{H} \end{aligned}$	Date	Revenue	Total pastengere	$\begin{gathered} \text { Can } \\ \text { itot'ks } \end{gathered}$	$\begin{gathered} \text { PAss } \\ \text { P. C. } \mathrm{H} . \end{gathered}$	$\begin{gathered} \text { Rev. } \\ \text { P. C. } \end{gathered}$
Mon.	1016		171		5.93	$\begin{array}{\|c\|} \hline \hline \text { MON } \\ \hline \end{array}$	991		171		5.78	MoN.	1019		175		5.82
$\begin{array}{\|c\|} \hline \text { TuEA } \\ \hline \end{array}$	967		163		5.94	$\begin{array}{\|r\|} \hline \text { TuEs. } \\ \eta \end{array}$	936		163		5.75	$\begin{gathered} \text { Tues. } \\ 4 \end{gathered}$	990		167		5.94
WE.	952		163		5,85	$\begin{array}{\|r\|} \hline \text { Wen } \\ 8 \end{array}$	947		163		5.82	$\begin{array}{\|c} \hline \text { WED } \\ 5 \\ \hline \end{array}$	968		167		5.80
$\begin{array}{r} \text { Tho } \\ \hline \end{array}$	939		163		5.77	$\begin{array}{\|} \hline 1+9 \\ \hline \end{array}$	938		163		5.75	$\begin{array}{\|c} \hline \text { The } \\ \hline \end{array}$	954		167		5.72
${ }^{\text {FRII }} 5$	996		171		5.81	${ }^{\text {FRill }} 10$	945		163		5.80	Frı	940		167		5.64
Total	4870		831		5.87	Toras	4737		823		5.76	Toras.	4871		843		5.76
$\begin{aligned} & \text { AvER- } \\ & \text { ACE } \end{aligned}$	974		166		5.87	Aven. AG.E	951		165		5.76	$\begin{array}{\|l\|} \hline \text { Aver- } \\ \text { AGE } \\ \hline \end{array}$	974		169		5.76
$\begin{array}{r} \text { Mon. } \\ \hline \end{array}$	1011		171		5,90	$\begin{array}{\|c\|} \hline \text { Mon } \\ 15 \end{array}$	888		171		5.18	$\begin{aligned} & \text { MoN } \\ & \hline \end{aligned}$	1010		175		5.77
$\begin{array}{r} \text { Tues. } \\ 9 \\ \hline \end{array}$	959		163		5.89	$\begin{array}{\|c\|} \hline \text { TuLs } \\ 14 \\ \hline \end{array}$	911		163		5.60	$\begin{aligned} & \text { Tubs } \\ & 12 \\ & \hline \end{aligned}$	958		167		5.75
WED 10	960		163		5.89	$\begin{array}{r} \mathbf{W}_{60} \\ 15 \\ \hline \end{array}$	831		163		5.10	$\begin{aligned} & \mathbf{W}_{\mathrm{E} \text { D. }} \\ & 12 \end{aligned}$	969		167		5.81
$\begin{gathered} \text { THU } \\ 11 \\ \hline \end{gathered}$	910		163		5.64	$\begin{array}{\|r\|} \hline 162 \\ \hline 16 \\ \hline \end{array}$	940		163		5.77	Tru 13	931		167		5.58
$\begin{array}{r} F_{R 1} \\ 12 \\ \hline \end{array}$	982		163		6.03	$\begin{array}{\|c\|} \hline \text { Fki } \\ \hline \end{array}$	943		163		5.79	$\begin{aligned} & F_{R 1} \\ & 14 \\ & \hline \end{aligned}$	934		167		5.60
Iotal	4831		823		5.85	Totas,	4513		823		5.47	rotal.	4802		843		5.68
	966		165		5.25	Aver agit	905		165		5.47	Aver.	960		169		5.68
$\begin{array}{r}\text { MoN } \\ \hline 15 \\ \hline\end{array}$	1036		171		6.05	$\begin{array}{\|c\|} \hline \text { Mon } \\ 20 \\ \hline \end{array}$	957		171		5.59	$\begin{gathered} \text { Mor } \\ 17 \\ \hline \end{gathered}$	974		175		5.56
$\begin{gathered} \text { Tues } \\ 16 \\ \hline \end{gathered}$	935		163		5.74	$\begin{array}{\|r\|r\|} \hline \text { TuEs } \\ 21 \\ \hline \end{array}$	939		163		5.77	$\begin{gathered} \text { Tuss } \\ 28 \\ \hline \end{gathered}$	932		167		5.59
$\begin{array}{r}\text { Weo } \\ \hline 17 \\ \hline\end{array}$	977		263		6.00	$\begin{array}{\|c\|} \hline \text { WED } \\ 22 \\ \hline \end{array}$	944		165		5,20	Wed 19	961		199		4.84*
$\begin{array}{r} \text { THU } \\ 18 \\ \hline \end{array}$	1005		163		6.17	$\begin{array}{r} \text { Thu } \\ 23 \\ \hline \end{array}$	923		163		5.6%	$\begin{array}{r} \text { THU } \\ 20 \\ \hline \end{array}$	864		167		5.18
$\begin{array}{r} 74 \\ \hline 29 \\ \hline \end{array}$	868		165*		5.33	$\begin{array}{\|l\|} \hline \text { FR1 } \\ 24 \\ \hline \end{array}$	934		163		5.74	$\begin{array}{r} \hline \text { Fal } \\ 22 \\ \hline \end{array}$	935		167		5,60
Total	3933		660		5.99	Total	4697		823		5.69	Fotal	4664		875		5.33
AVEM	988		165		5.99	ADER-	939		165		5.69	Aver	933		175		5.33
$\begin{array}{\|r\|} \hline \text { Mon } \\ 22 \\ \hline \end{array}$	972		171		5,67	$\begin{array}{\|c\|} \hline \text { Mon } \\ 27 \\ \hline \end{array}$	1009		175		5.76	$\begin{aligned} & \text { Mon. } \\ & 24 \end{aligned}$	962		175		5.50
$\begin{array}{\|r\|} \hline \text { TOEA } \\ 23 \\ \hline \end{array}$	846		163		5.20	$\begin{array}{\|c\|} \hline \text { TuEs } \\ \hline 28 \\ \hline \end{array}$	977		167		5.26	$\begin{array}{\|c} \hline \text { TUES } \\ 25 \end{array}$	879		167		5.27
$\begin{array}{r} \text { WED } \\ 24 \\ \hline \end{array}$	897		163		5.51	$\begin{array}{\|r\|} \text { WED. } \\ 29 \\ \hline \end{array}$	963		167		5.78	$\begin{gathered} \text { WED } \\ 26 \\ \hline \end{gathered}$	904		167		5.42
$\begin{array}{r} 7 \times 0 \\ \hline 25 \\ \hline \end{array}$	892		163		5.48	$\begin{array}{\|c\|} \hline \text { THU } \\ \hline \end{array}$	982		167		5.80	$\begin{gathered} 7 H 0 \\ 27 \\ \hline \end{gathered}$	850		167		5.10
$\begin{array}{r} \text { Fal } \\ \hline \\ \hline \end{array}$	934		163		5.73	$\begin{array}{\|r\|} \hline \text { Fnt } \\ \text { SI } \\ \hline \end{array}$	960		107		5.77	$\begin{array}{r} \text { FaI } \\ 28 \\ \hline \end{array}$	899		167		5.40
Totas	4441		823		5.38	Toral	4891		843		5.82	Tatal	4494		843		5.32
$\begin{aligned} & \text { Aver- } \\ & \text { aGE } \end{aligned}$	889		165		5,38	$\begin{array}{\|c\|} \hline \text { Aver } \\ \text { ACE } \end{array}$	978		168		5.26		899		169		5.32
M\%\%	969		171		5.66	Mon						Mon.					
Tulo	853		163		5.24	Tues.						Turs.					
	968		163		5.94	Weo.						Weo					
$\begin{array}{r} \text { THO } \\ \hline \end{array}$	938		163		5.76	Thu.						Treo.					
${ }^{\text {Far. }}$	1032		163		6.32	Fat.						F_{41}					
Totas	4760		823		5.77	Totas						Toral					
	95%		165		5.77	$\begin{array}{\|l\|} \hline \text { Aven } \\ \text { ACE } \\ \hline \end{array}$						$\begin{array}{\|l\|} \hline \text { AVER } \\ u \subset \varepsilon \\ \hline \end{array}$					
Gond Frider not			included in		avorese												
Total						Total						Totas					
Avar ace						Avok-1						Aver					

FIGURE 5.
TYPICAL LINE CHART OF CONTROL DATA SAMPLE COMPANY UNDER STUDY.

Before an attempt is made to construct a schedule for a trensit line, the schedule maker should have certain basic and fundamental facts at his disposal. These facts include the following:

1. A knowledge of the nature of the territory served, including the riding habits of transit patrons on the line.
2. The route milcage of tho line, together with the individual distances between selected time points.
3. Types and sizes of vehicles available.
4. Type and size of vehicle bost suitod to the particular route,
5. Seating capacity of the vohicle to be used.
6. Stonding capacity of the vehicle to be used.
7. Ability of the vehicle to be used in sorvice over short or long hours of service.
8. Loading standards to be employed during peak and off-peak periods. Consideration should be given to special local problems which may affect loading standards.
9. The total numbers of patrons to be handled during peak and off-peak hours, together with their distribution by 15 -minute or 30 -minute periods, depending upon the size of line and time of day.
10. The speeds at which vehiclos may be operated during the peak and off-peak periods.
11. The running time required between line terminals during different periods of the day.
12. Flexibility of the line from the standpoint of being able to meot minor changes in running time from trip to trip.
13. The "headway adjustment time" required at line terminals.
14. The total round trip time required during the various periods of the day.

A considerable portion of Part I of this report will be devoted to a discussion of methods for obtaining the basic facts listed above.

FIGURE 6.
CHART SHOWING RELATIVE IMPORTANCE OF THE VARIOUS DAYS OF THE WEEK-

SAMPLE COMPANY UNDER STUDY.

Figure 7 is a sample of the type of route map used by the company whose procedures are under study. This map shows the general layout of the routc together with inbound, outbound, and total round trip distancos, and the distances between time points. These distances are important in computing the operating speeds which are characteristic of the given line and the size and type of vehiclo used thereon. The lower half of the figure shows the routos utilizod in moving buses to and from the line in question, tom gethor with the Ristances associated with such movements into and out of tho bue garage.

Various methods are employed in the determination of route mileage and the distances between time points. In the case of its street car lines, the company obtains the distance measurements necessary for tho preparation of route maps from the alignment drawings of the track and roadway structure. In the caso of trolley coach and motor bus lines a surveyor may be employed to determine distances through the use of the tools of his profession. An autcmobile with an accurate speedometcr may be utilizod to obtain approximate information as to route mileages and the distances between time points. Spocial devices are avallable for measuring distances with considerable accuracy. Theso aro utilized in conjunction with the operation of an automobile ovor the prodetcrmined route.

Figure 8 is a picture of the equipment used by the sample property in obtaining distance data and preparing its routo maps for motor bus and trolloy coach lincs. This device and its operation are briefly described as follows:

The equipment includes a "Footometer", coil-spring, wheel carrier, running-board bracket, door bracket, drive cable, and Fifth Whoel and arm. It can bo attached to any car in a few minutes without the aid of a mechanic, and may be easily transforred, without altoration, from ono car to another. Accuracy is obtained by using a standard bicyclo balloon tire, size 24×2.125, at practically no air pressure, which prevents bouncing of the whecl and eliminates the effect of tire pressure variation. A coil spring from the wheel hub to the running board bracket, acting like a shock-absorber, holds the whecl to the road. Accuracy can be maintained by incicasing the pressure slightly when the wear of the tiro, after long usage, reduces its size. The amount of air pressure is adjustod in accordanco with tost runs over a know distance.

The Footometer is mountod on the door bracket at eyo level, and just outeide of the window. It can be re-set to ZFRO instantly, and has a de-clutching device which permits it to be engaged or disengafed instantly, wi.thout stopping tho car. To engage the Footometer, Button "A" is pulled outward. To disengage it, Button " B " is pulled outward. When Button "B" has been pulled outward, it can be turned in either direction to set the pointor to the ZERO position on the dial. When the pointer is at the top of the dial, the odometer can be set to ZERO instantly by pressing inward gontly on Button "A". A comploto revolution of the pointer around the dial indicates the measuroment of 100 feet. The odoneter, which is similar to tho mileage counter in a speodonetor, tallies the number of "hundrod feet" measured. The capacity of the Footometor is 100,000 feet. At this point, it would be automatically reset to zero.

CITY PARK BUS LINE
OUT禾N STATION
FIGURE 7.
TYPICAL ROUTE MAP SAMPLE COMPANY UNDER STUDY.

FIGURE 8.
THE "SUHVEY FOOTOMETER", DEVICE FOR MEASURING ROUTE DISTANCES SAMPLE COMPANY UNDER STUDY.

PASSENGER LOAD DATA

Tho following discussion of a method for obtaining and summerizing passenger load data is based upon the procodures used by the sample transit company. Reference to Parts II and III of this project will furnish the student of the report with an insight into other methods of load checking and differing managerial viewpoints with respect to this phase of the schedule-making proceduro. Soveral alternative methods for performing this check aro also given in the "Manual of Transit and Traffic Studios" recontly issued by the American Transit Association.

A. Importanco of Passenger Load Data

Too much emphasis cannot be placed on the noed. for adequate and properly obtained passenger load data es the fundmental starting point for the process of schedule-making. The schedule maker must have at his disposal up-to-date informa. tion concerning the numbers of persons who wish to ride the transit lines at various periods of the day. It has become the general practice of the industry therefore, to regularly check the lines of the system in order to determine the volume of business which must be handled. Such checks are commonly referred to as the "load" check or "point" check. The passenger load check consists essentially of a method for obtaining the numbers of passengers per, given time period which pass a certain point on the route known as the "maximum load point".

B. Maximum Load Point

It is, of course, helpful to the schedule maker to know as much as he can about the riding characteristics of the line for which he is about to prepare a schedule. One method for determining the riding characteristics of a line is to take an "on and off" passenger riding check at wide intervals. Such a check consists in recording at each street intersection the numbers of passengers boarding and alighting from each vehicle as it traverses the route from one end to the other. This information enables the load on any one vehicle, and, thereiore, the summation of the loads on all vehicles on the line, to be determined by: accumulating the differences between the number of passengers boarding and the number of passengers alighting at each intersection. Several methods for conducting passenger "on and off" riding checks are given in the "Manual of Transit and Traffic Studies" previously referred to.

The process of computing the load on the vehicle at each intersection reveals for each vehicle and, therefore, for the average of the line, that point along the route at which the maximum load on venicles tends to accumulate. This point is known as the "maximum load point". It is significant because it is the control point for making observations as to the volume of business, and its time distribution, which must be handled by a given schedule - either present or proposed.

Having determined the maximum load point for the route, passenger load data are observed and recorded at the location on a routine, systematic basis.
C. Information Required

The information obtained from a passenger load check consists of the following:

Name of the line.
Location at which observations were made. Direction of travel.

Number of the vehicle. Time of arrival at maximum load point. Headway interval between a vehicle and the preceding one. Number of passengers or "loed" on the vehicle.
Train number, run number or other schedule designation.
The day of the week, date, weather conditions and name of the observer are includod, together with any special comments, such as the rail condition as affected by rain, etc. on street car lines. If the observer is forced by adverse weather conditions or other good cause to move some little distance away from the regularly designated point of observation, this fact shou d be noted on the data sheet also.

D. Checking Form

The passenger load checking form used by the company whose methods are under study is shown in Figure 9. This form is filled in with actually observed load data for the line which will be used as the sample throughout the remainder of the study.
E. Detail of Procedure

Perhaps the best method of expleining the detail of passenger load checking procedure would be to include below the general instructions issued to load checkers in the schodule department. These instructions, substantially as they are given to the chockers, are as follows:

> GENERAE INSTRUCTIONS TO
> LOAD CHECKERS OF THE
> SCHEDULE DEPARTMENT

General Duties

The principal duty of a load checker consists of checking the numbers of passengers on street cars, trolley coaches and motor buses as they pass the maximum load point of a line. Tho following data are ordinarily obtained by the checkor:

> 1. Vehicle number.
> 2. Train number.
> 3. Arriving time.
> 4. Maximum load per vehicle.
> 5. Weather and rail conditions.

From the data obtained, the checker calculates the actual hoadway that is being maintained, separates the data into proper checking periods, and totals and averages the passenger load within each period. The use of an accurate and suitable watch and the accurate counting of passengers are required of every checker.

Checking Record

A properly filled-out record form has been reproduced in Figure 9.
An experienced load checker usually records first tho vehicle number and the train number of the approaching vehicle. He also endeavors to write dow the arriving time of the vehicle Just before it reaches him, allowing a few seconds

for the vehicle to arrive at the checking point. In this way, only the passenger load renains to be countod when tho vohiclo arrivos at the checking location. Undor no circumstancos should an operator be asked to "hold" the vohicle while the count is boing made. After tho vehiclo has passed, the chockor calculatos the headvay; and when the propor checking poriod has elapsed, he totals and arcirages the passenger loads (Figure 9).

Checkers should notc on their checking record shocts all information of a spocial nature which has relation to tho count boing mado. For cxamplo, stcamod windows - making it difficult to observe loads, tho naturo of blockados - if lenow, rowroutine of cars, watch failurc, etc.

Chockors should number, dato, and sign oach shoet of the checking rocord. Upon completion of the rocord, it should bo placed in an "Official Business" envulope, scalcd and delivored to any oporator on the line which is being checked. The operator will in turn deliver it to the station mastor for forwarding to tho schedule department.

Passoncer loads aro totalod and averaged for 15 -minutc periods during peak hours, and for 30 -minuto poriods during off-paak hours. Thesc poriods are not governed by tho starting time of tho check, but should begin on the quarter, half, or cven-hour poriod. The following tabulation shows when the 15 -minute or 30 -minute periods are used:

Sorvice	Time Duration
Early A.c. ${ }_{\text {M }}$	5:00 A.M. - 6:00 A.M.
A.M. Poak	6:00 A.M. - 9:00 A.M.
Basic	9:00 A.M. - 4:00 P.M.
P.M. Poak	4:00 P.M. - 6:30 P.M.
Night	6:30 P.M. -12:00 M.
	Vehiclo Arriving Time

Checking	Poriod (Minutos)	
Weokday	Saturday	Sunday
30	30	30
15	15	30
30	30	50
15	15	30
30	30	30

Tho time at which a vohiclo arrives at a chocking point should be determincd accurately to tho noarost half' minute. To decide whothor a vehiclo arrives at a checking point on the even minute or half minute, consider all time as in ovon minutes if tho second hand is betwoon tho 45 and 15 socond marks, and as in half minutes if the second hand is between the 15 and 45 sccond marks. The drawings show in Figure 10 illustrate hov the above rule is used.

Load checkors are expectod to provide themselves with accurato watches of the "railroad" type. The use of watches having loss than 17 jewels, and the usc of wrist watches of any type, is strictly prohibitcd.

Load checkers are roquired to set their watches boforc beginning each chocking assigninont. In ordor to do this, thoy must socure tho correct time from the station out of which the line to be chockod oporatos. Under no circumstances should time be socurcd from trainmen.

When the correct time is to be obtainod over the telophone, the following procodure shoulà bo usod:

1. Remove watch crystal.
2. Dial main office tolophone number.
3. Hold watch or small picco of cardboard on the 60 second inark of tho second dial.

FIGURE 10.
determination of "even minute" and "half minute" from second hand dialSAMPLE COMPANY UNDER STUDY.
4. Ask switchboard operator for proper station.
5. Give name to station and request correct time on the even minute.
6. Renove object holding second hand when time is called.
7. Set minute hand.

Counting Passenger Load

It should be thoroughly understood by all those who receive load checking assignments that the counting of passongers is required, and that estimating or guessing the probable pasconger load in a vehiclo will not be tolerated. It is realized that proper instructions, together with a certain amount of checking oxperience, is required in order to develop accurate and officient checking methods; hence, all who wish to qualify as load chockers must be trained to chock under the direct supervision of an experienced load checker designated by the head of the department.

The passenger load in a vohtclo may be considered as one of the following genoral types:

> 1. Light seated load.
> 2. Heavy seated load.
> 3. Ioad in uxcess of seating capacity.

No. 1. Light Soated Inad - This is tho easiest type of load to count, the chockor simply counting the number of passengers in the vehicle.

No. 2. Heavy Seated Load - This is the most difficult type of load to count. The opinion of experienced chockers is that it is advisable to count the number of vacant eeats, subtract this amount from the vehicle's seating capacity, and add to this the number of standeos, if any. (Note A list of the seating capacities of various typos and series of vehicles is furnished to the load chockers.)

No. 3. Load in Excess of Seating Capacity - There are several methods of counting this type of load. The preferable way is to count the standees, at the same time subtracting the few seats that might be vacant. To this anount add the seating capacity of the vehicle.

Checking Location

In order to secure an accurate passenger load count, it is obvious that the checker should placo hiraself in the most advantageous position at the checking point to which he has boen assigned. A number of drawings has been prepared showing the physical layout at each of tho regular checking locations, and on each drawing the most advantageous positions for ordinary checking conditions aro indicated. While thesc drawings indicate to the checker the proper side of the street from which he should chock, they do not show specifically his position with reference to a stopped vehicle. It has been found from oxperience that he should station himself at a point opposite the front ond of a vohicle when it has come to a stop. Assuming this position cnables him to walk alongside of the vehicle, and should facilitate the accurate counting of passengers.

The above method of checking passenger loads applies to both "one-way" and "two-way" traffic. When checking "two-way" traffic, the checker should select that
checking location show on the drawing whioh will facilitate the counting of loads on vehicles moving in the direction of heaviest travel. The vehicles moving in the opposite direction will have to be checked while they are in motion, but since they are usually lightly loaded, no difficulty should be experienced in counting these passengers.

While reference has been made to definite checking positions whioh are indicated on the drawings, it is not intended that a checker remain at these points if conditions warrant his shifting to a more advantageous position. For example, during the surmer months patrons frequently pull dow the window shades on the sunny side of the vehicle, thus making the counting of passengers from this side difficult, if not impossible. Under such circumstances, checkers should take a position facing the sun, on the shady side of the vehicle.

Checking Assignments

In order that a shecker may be thoroughly informed concerning each day's work, he is furnished a written assignment which gives him all necessary information. A tyoical checking assignment form is reproduced in Figure 11.

Checking assignments must be completed unless terminated by proper authority. It is not intended, however, that checkers should expose themselves to inclement weather. They should secure shelter as near as possible to the point of check, continuing the check from this new location until such time as it can be resumed at the regular location.

In the event that a checker finds that he is unable to work his assignment due to illness or other causes, he should communcate with his inmediate supervisor as soon as possible, so that other arrangements may be made. If a checker is late in reporting to work, he should state on his checking record the exact time that he began to work, and the reason for his being late.

If checkers are in doubt regarding any detail of their assignments, they should commuicate. with the schedule department for further information.

Chocking Hours

During weekaday the regular checking hours are from 6:00 A.M. to 11:30 P.M. The individual checking assigments may be as follows:

1. Froin 9:00 A.M. to 12:00 Noon (3 hours) (Monday)
2. From 1:45 P.M. to 6:45 P.M. (5 hours) (Monday)
3. From 6:00 A.M. to $10: 15$ A.M. ($4 \frac{1}{4}$ hours) (Tuesday through Friday)
4. From 3:00 P.M. to 6:45 P.M. (3-3/4 hours) (Tuesday through Friday)
5. From 6:00 A.M. to 2:45 P.M.* (8 hours) (Tuesday through Friday)
6. From 2:45 P.M. to 11:30 P.M.*(8 hours) (Tuesday through Friday)
(*These are the two shifts oif the 18-hour check. Each checker has a 45-minute lunch relief.)

On Saturdays the checking nours are from 6:00 A.M. to 11:30 A.M., and from 12:30 P.M. to 9:00 P.M. On occasion further checks are on Saturdays beyond 9:00 P.M. On Sundays the checking hours are from 2:30 P.M. to 11: $; 5$ P.M. It is customary for the sample company to rely upon an analysis of "trip sheets" for Sunday morning loeds.

Special instructions are issued from time to time covering checks of other durations, and for other purposes.

Checkers should at all times conduct themselves in an orderly manner. While on duty, checkers should not hold unnecessary conversations with porsons not connectod with the company, nor with company omployees unless the conversation relatos to company business.

In tho event a blockade occurs near the point of check, the checker should offor his services to supcrvisors or other officials of the transportation dopartment. Any assistance rendered should be noted on the checking record.

Checker's Accuracy Tost

The data obtained by load chockers is used to check the officiency of schedulos in offect and, when summarized with other checks, is used in the building of now schedulos. Hence, any inaccuracy in counting passenger loads will rofloct on the correctness of present schedulos, and will bo misloading when now schedules are prepared. It is, therefore, the practice of the schodule dopartment to test poriodically the accuracy of load checkors. This is done by having somo nomber of the schedule departmont board a vehicle on the line beins checked, in order that he may accurately count the number of p. ssongers in the vehicle as it passes the chocking location. Any unuelial discrepancy betweon tho count of the load checker and that of the riding shouker will be imncdiately called to the attention of the chocker being testoà.

A typical "load checkor's accuracy test form" is roproduced in Figuro 12.
F. Frequency of Checks

The company conducts a regular, progrossive and systematic program of passengor load chocks so that its schedulo makors may be fully informed as to ridine conditions at all tines.

Undor the systomatic program the lines of the system are checked with the following approximate frequencies:

	Maximum No. of Peak Type of Linc
Hehicles	
Hedium lines	$20-39$
Light lines	$10-19$
Very light outlying lincs	$6-9$

Frequency of Iooad Checks

Approximately every two weeks Approximately every three weeks Approximatoly every $4-6$ weeks (Trip sheot analyses aro used.)

The majority of checks taken at this time aro of 18 -hour duration, as it is considered necessary to follow closely the fluctuations in passenger load at all periods of the day. Under normal conditions the 18-hour checks aro spaced more widely and eupolementod with chocks taken during peak hours only.

Figure 13 shows a form utilizod by the company in keeping a record of the dates on which its l8-hour passenger load checks aro taken on the lines of the system. This record assists the Superintondent of Schedules when making woekly assignmenis for such chocks.

FIGURE 12.
STANDING CHECK LOCATIONS
TUESDAY TO FRIDAY 18:00 Hour.

In addition to the routine program of checks, special checks are conducted when warranted by the following conditions:

1. When routine checks indicate an abnormal condition developing on a line. More frequent checks of the line are made.
2. When reports from the Transportation Department indicate an abnormal or troublesome condition developing. Such lines are re-checked.
3. When special circumstances produce a temporary "shifting" of the maximum load point for a few trips. Such "temporary" maximum load points are checked.
4. When an analysis of passengers transferring from one line to another at certain transfer point is required. The "arriving" and "loaving" loads at such transfer points are checked.
5. When special information concerning passenger loads is required in connection with research and planning studies. Such checks are conducted by the Schedule Division for the Planning Unit.

Extra trainmen are called upon as required to meet any broad or extended program of special checks. Under the normal operations of the Schedule and Planning Division many trainmen have been trained and developed into capable "extra" checkers as a reserve to draw upon.

G. Summarization of Passenger Load Data

As explained under "Generai Instructions to Load Checkers", completed checks are forwarded to the schedulo office via compeny mail.

It is not practical to try to obtain a mental picture of the passenger load carrying characteristics of a line by meroly oxamining the individual checking records as they come in. For this reason a form has beon developed for summarizing load check data so that the results of several days' checks may be studiod simultancously. A designated employec in the office onters the checks on the summary sheet. Thus, the assembled data for several load checks will come, upon inspection, to show readily the efficiency of the schedulc in effect. It will also provide the basis for the construction of new schedulus at some future date.

Figure lk shows a form called "Recapitulation of Passenger Checks" which is used by the company for summarizing load data. Before beginning to "post" tho form from the passengor check shoets, the following information should be inserted in the appropriate spaces:

1. Number of the schedule currently in effect.
2. Namo of line.
3. Class of schedule (woekday, Saturday, Sunday).
4. Line terminals for which scheduled time is show, both inbound and outbound.
5. Checking locetions, both inbound and outbound.
6. Train numbers, taken from the terminal sheet for the schedule in effect.
7. Scheduled leaving times, taken from the torminal sheet for the schedule in offect.
RECAPITULATION OF PASSENGER CHECKS
TUESDAY TO PRTDAY BChEDULE

The second step consists of the diviaion of the scheduled leaving times into proper periods of 15 or 30 minutes each, depending upon the time of day (soe "General Instructions to Load Checkers"). The division lines, which break the summary shect into "bands" are drawn for the inbound and outbound directions separately. The lines for the inbound direction aro governed by the leaving times of vehicles from the outer terminal of the line, starting with the first vehicle. The division lines for the outbound direction of travel are governed by the leaving times of vehicles from the inner terminal of the line. These lines are drawn according to even 15 -minute (or $30-\mathrm{min}=$ ute) clock intervals.

Tho third step consists of transferring the actual load data into the appropriate columns and rows on the summary sheet. Each column is headed with the name of the day and the date. Inbound and outbound figures are entered in separate columns. As the data for cach day's check is entered, the total number of passengers handled in each time period is detormined and entered in the same column at the bottom of the period and just to the right of the column of actual load figures. The total for the period is divided by the number of vehicies contributing to the total in order to determine the average load per vehicle during that period for the day in question. This average figure is entered in the same column and band, midway between the time division linos. This procoss is ropeated for each succeeding day's chock.

An example of the method of entering passenger load data on the summary sheet and computing totals and averages is given bolow. (Please refer to Figuros 9 and 14):

The data sheet marked with the Figure 5 in a circle on the left-hand side of Figure 9 has been entored on the inbound (loft-hand) half of the summary sheot shown in Figure 14. The datc of the check is April 10, and the entries begin with Run No. 13 at the point marked "X" on the passenger check shoet. Those loads are listed on the summary shoct beginning opposite Train No. 13 in the upper left-hand corner of Figure 14. These loads, reading vertically, are 12, 11, 14, $15,31,16,21,14,17,34,20,4,18,5,33,20,28,14,16,1$, and etc.

The data sheet marked with the Figurc 3 in a circle on the right-hand side of Figure 9 has boen entered on the outbound (right-hand) half of the summary sheet shown in Figure 14. The entries begin with Train No. 5 at the top of the passenger check sheet. These loads aro listed on the sumary sheet beginning opposite Train No. 5 (4:40 P.M.) in the column for Wodnesday, April loth. These loads are 46, 52, 32, $46,62,42,16,44,67,72,58,52,50,71,65,73,58,67,74,71,76$, and 63, as shown vertically in this column.

This process is, of course, repcated throughout the entire range of the checking period.

Attention should next be directed to the right-hand (outbound) half of the passenfer load summery sheet (Figure 14), with particular referenco to the 15-minute period "banded off" from 5:00 to 5:15 P.M. (5:01 through 5:14 $\frac{1}{2}$ P.M.), which embraces Train Nos. 15 through 2 as they pass the outbound maximum load point at Dumaine and Claiborne Sts. In the colum for April lOth, tho passenger loads for this 15-minuto poriod total 441 passengers, as shown by the figure at the bottom of tho timo band just off to the right of the entry for Train No. 2.

This figure of 441, when divided by the seven (7) vehicles which pass the outbound maximum load point during the 15 -minute period, gives an average load of 63 passengers per bus for that period. This figure "63" is entered in the appropriate column (April loth) and time band (5:00-5:15 P.M.) just to the right of the column of actual load figures. The totals and averages for each column and time band on the entire series of sumary sheets are similarly computed and entered.

As the checks are entered on the sheet the designatcd employee watches for abnomal loading. The averages computed for each time band on a given day permit the student of the recapitulation sheet to compare loadings for a given time period with the recognized loading standard for that period. After the several days' checks have been entered, totaled and averaged as described above, it is possible to compare the loads on individual vehicles, as well as the daily averages by periods. This comparison of checks made on different days enables, the "spotting" of vehicles that consistently carry heavy or light loads. At the same time, this comparison will show whether the average load per vehiclc is increasing or decreasing. Such increases or decreases largely determine when a new schedule should be prepared.

The following is a brier analysis of the information appearing on the surmary sheet show in Figune 14:

After the schedule clerk entered the data from the passenger check sheets on the summary form, he placed a circle around all those loads of individual buses which were higher than the average loading standard to be used for scheduling purposes during the particular 15 -minute period. For example, the buses used on the sample route are of 40passenger capacity. Allowing for the $33-1 / 3 \%$ standee load which is generally used as a peak-period average on the bus routes of the company whose schedule-making processes are under study, the peak loading standard on the sample line would be 53 passengers per vehicle. All values of 54 and over have accordingly beon circled an "overloads". Throughout the series of checks in this summary there has been a tendency for the number of "circled" loads to increase. In some instances individual loads as high as $69,70,71,72,73$, and 76 may be found. The line has obviously become overloaded, and the summary sheet indicates the need for additional service to be inserted in the schedule as a means of bringing the average actual peak loadings dow to a level nearer the approved loading standard. This is a further reason for the revision of the schedule which is to be stuaied in this report.

Reference to the "Manuel of Transit and Traffic Studies" published by tine Association, as well as to Parts II and III of this study, will provide tho studont with altornative methods for sumnarizing or recapitulating passenger load data.

A further discussion of the use of passencer load sumnaries in determining now headways when new schedules are to be constructed will be included in Soction IV of this report undor the heading "HEADWAY ORDER".

At this point, attention will be directed to the running time check, which is roquired along with the passenger load check in detcrmining the headway ordur for a new schodule.

RUNNING TIME DATA

The following disclission of a mothod for obtaining and summarizing running timo data is bascd upon the procodures usod by the sample tranait company. Reforonce to Parts II and III of this project will furnish the student of the report with"an insight into other methods of running time chocking and difforing managorial viowpoints with respoct to this phasc of the schedulc-making process. Sevoral alternative methods for performing this chock arc also given in the "Manual of Transit and Traffic Studics" recently issuod by the American Transit Association.

A. Importance of Punning Time Data

It is extremely important that the schedule maker havo at his disposal adequatc and correctly obtaincd data upon which to baso an estimate of the running timo for the line for which he is about to prepare a schedule. Running time is important becausc it determines in large measure the degreo of convenionce which the public will rocoive from a schedule from the standpoints of speed and olapsed time in their travels. It is also important because it has much to do with the officioncy of a schedule and its resulting cost of oporation from the company point of viow.

The running time chock furnishes a means by which the Schedule Department can evaluato the speod porformanco of a givon vehiclo when oporated undor actual service conditions in tho public strects. Any transit vehicle is subject to the effects of various kinds of dolays as it traverses its routc, and theso effects are quito likely to vary markedly during different periods of the day. For examplc, during the peak hours there is customarily a. great volumo of private automobilos, taxicabs and comorcial motor vehicles, all of which require strect space for their movernent and contribute to traffic congestion. During these same hours large numbers of persons are using the transit linos in ordor to reach or leave thoir places of work. This means that the loads on transit vohicles aro groater, that more passengers board and alight at each stop, that stops are more frequent and of longer duration, and that more time is consumod by passengers in moving through the crowded aisles of vohicles to or from the doors. All of those clements contribute to delay and longer running time. In the baso period of the day, at night, on Sundays, and in some cases on Saturday afternoons, transit loads are relatively lighter. Stops are less froquent, and there is a smaller passenger interchange with less loss of time at stops. Strect traffic is usually roducod in volumo at thoso times, and the vehicles is able to move moro easily through the less congosted streets. At such periods the interests of both the public and the company aro bost sorvod by a shortor running time.

It is important to the company which hopes to achicve every possible operating conomy consistont with a convenient sorvice to the public, that due attention be given to the variation which takes place in running time during different seasons of the yoar, on different days of the wook, and at different times throughout a singlo day. The alert Schedule Department will take advantage of the variation in the conditions which produce interforence and delay, and will change the running time as frequently as necessary to obtain maximum schodule officiency.

The company whose schedule-making processes are under study in this report appears to be especially conscious of the importance of frequent changes in running time. It is custonary for this company to divide each day
into the following periods from the standpoint of running time changes:

```
1. Early A.M.
2. A.M. Peak
3. A.M. Basic
4. P.M. Basic
5. P.M. Peak
6. Early Night
7. Late Night
8. Owl
```

Changes in running time are also made to adapt schedules to the various days of the week, as well as take care of seasonal aspects.

B. Time Points

In order to contrcl the operation of scheduled vehicles so that the service will be available where and when needed, the company has established "tinc points" along its routes in both dircctions of operation. The primary purpose of these time points is to keep the vehicles properly spaced, and to prevent an operator from "running away" from passenger loads and imposing them upon the venicle following. This use of time points mast be made effective through supervision and discipline.

It is customary for the company to space its time points so that the running time betweon them is close to an average of four minutes, and not in excess of six minutes. On lines having a "close headway" or short interval between vericles - ssy, $1 \frac{1}{2}$ minutes - it would be possible with a 6 -minute time point for an operator to run ahead and widen the "gap" between his vehicle and the vehicle behind. It is more difficult to do this with a 4 minute time point interval.

The company requires strict adherence to time at all inbound time points because it wants vehicles to leave the inner terminals of lines on time if possible. On certain lines adherence to time points on the outbound trip beyond a certain point is not rigidly enforced. The point of departure from the rule of adherence is usually the third time point on the outbound leg of the line, and is detcrmined by a study of the area of "pick up" on the outbound route. Time points which are not to be adhered to are not shown on the trainman's "run guide".

Time points for the line under study are listed on the illustrations show in Figures 15 and 22.

For other methods of detemining the locations of and utilizing time points, see Part II of this report.

C. Information Required

The information required from a running time check consists essentially of the following:

1. Name of line being checked.
2. INumber of schedule being checked.
3. Vehicle number.
4. Train number according to current schedule.

D. Checking Form

Tho checking form used by the company is shown in Figuro 15. Thero aro two shocts to the form, the loft-hand ono giving the names of the time points, the running times and the spokds for tho schodule in effoct on the line for tho particular daily time poriod; and the running timo chock form itself, which is show on the right-hand side on the figure. Both the running time shoet and the running time chocking form aro loose-leaf and are placod side by side in a special bindor. The semplo form has beon fillod in with an actual sot of running timo obsorvations for tho linc which will be uscd as an cxample throughout the romainder of tho study. Samples of other forms used for collecting running time data may be found in the "Manual of Transit and Traffic Studios" previously referred to.

E. Dutail of Procodure

Bocause of the importance of the running timo check to tho schodulemaking process, extrenc carc is exorcisod in the selection of riding checkers. Unliko the passenger load check, for which accuracy tests can be mado, it is more difficult to deturmine the proficiency and judgment of riding checkers. Henco, more dopendence rust bo placod on the proper solection of men to do this type of work. The important charactoristics of a good riding chocker are as follows:

1. Ho must be exporionced load chocker.
2. Hu should bo capable of porforming the duties of a vehiclo operator, whether this be a stroct car oporator, trolloy coach operator or motor bus operator.
3. Ho must bo fast and accurate in mathomatics.
4. He must be capable oir concentrating on the task of

"judgins specd" throughout his ontire working day.
5. H: mont bo capable of sclocting trips which aro truly ropresontativo.
6. Ho should havo the ability to discorn when a trip is not ropresontativo duo to oxcossivo delays, otc., in order that he will not continue to wasto time by checking a trip which tho schcdule makers will ultimately discard.
7. Ho must be entirely roliablc and trustworthy.

Porhaps tho best mothod of explaining the dotail of the running time chock procedure would bo to include below the gonoral instructions issued to running timo checkers in the Schedule Dopartment of the sample company. Thesc instructions, substantially as thoy aro givon to the checkers, are included below:

> GETERAL INETRUCTIONS TO
> RUNNING TINE CHECKERS OF THE
> SCHEDULE DFPARIMENV

Principal Duties
The principal duty of a riding checkor is to compare mentally the spocd wedo by a vohiclo being chocked with the avoraçe speed which it should have mado under any givon sct of condıtions. Based on this comparison or "mental evaluation", ho "grados" the operating spoed of tho vohicle accordingly, and tabulates the following data at each time point:

$$
\begin{aligned}
& \text { 1. Vohicle arriving tinc (actual). } \\
& \text { 2. Passenger load. } \\
& \text { 3. "Gradod" specd botwoen time points. } \\
& \text { 4. Nuinbor of stops botwoun timu points. } \\
& \text { 5. Renarks. }
\end{aligned}
$$

From the data obtainud, the checker calculates the "ahead" or "late" time at cach time point and the amount of timo used botween time points.

A riding checkor is also a schodule ubscrvor, and it is his duty to report those things that tend to detract from the officient operation of the schedulcs in offect; as, for example, hazardous condition or location of vehicle stops, or badly timod traffic lights.

Chocking Assignmonts

Ridinf checkors recoivo instructions from their suporvisor in the Schedule Department, who furnishos then with writton assignments on a form which is idontical with that given to load chockors. (Soe Figure ll). Checking ascignmonts usually cover a period of 7 days, starting on Monday, and conding the following Sunday. It is the usual practice of the corpany to use throo chockors on such a chock, one for the morning poriod, ono for tho cvening puriod, and the third ono covoring both peaks.

Durine very inclement weather chockors should communicate with their suncrisor rogarding tho advisability of continuing the chock.

FIGURE 16.
TYPICAL TERMINAL SHEET-

In the event that a checker is in doubt regarding his assicnment, he shall commuicate with his supervisor as soon as possible.

Data Furnished to Checkers

When a checter reccives an assignment to ride a line, he is furnished with a copy of the terninal sheet for the schedule in effect on that line. rigure 16 shows a typical terminal sheot, which is a complete schedule or "tine-table" of the leaving times from the inner and outer terminals of the iine.

The running time sheet maintained in the Schedule Departrent is in its regular form unsuitable for use by a riding checker; hence, all existing running time data for the line and period of the day is retabulated on a srecial form, which has been shown as the left-hand side of Figure 15. This shoet is placed in the riding checker's loose-leaf bindor opposite the actual running time check form, also shown in Figure 15.

After having received hiss assignment, a chocker ib at liberty to examine the load chock recapitulation or summary sheets, in ordcr to determine on which trips he Ins expect to find the most representative passonger loads.

Checker's Freparation Before Ridine
Before beginning cach day's work, a checker shall set his watch in acoordanco with the instructions given previously under the heading "General Instructions to Loed. Checkers".

Before beginning each ride, the checher should place the proper running time shoet in the loose-leaf binder opposite tho running time checking form.

The next step is to consult the terminal sheot and seloct a particular vehiclc (train number) to ride. This should be done just before checker boards the vehicle preperatory to riding. (It is customary for omplorees in the Schedule Office to "cirele" the terminal times of those peak trips which have heavy loade for thu guidance of riding checkors.) Tho scheduled leaving time for this vehicle should be onterod undor "Schedule Tine" opposite the terminal from which it will leave. Then, by adding to the torminal leaving time the runnine time allowances botwoen time points, the checkor is able to compute the scheduled arrivine time at each timo point.

Gunoral Checking Procedure

When starting to ride, a chocker should placo hinsolf in a position which will facilitato his observation of the vohiclo oporator. In the case of two-man strect cars (which are comon on the lines of the sample cormpany) the position sclectod should facilitatc his observation of both motorman and conductor. A checiser may assume cither one of two positions:

1. For heavy or light lcads - loft-hand side of Pront platform, noxt to tho bulkheed.
2. For light loads only - next to window on first cross-scat on rigit-hand side of car.

When tehicle loaves its tominal, the checker should record tho actual leaving time and possongor load, and compute the "ahoad" or "late" leavine timo. Time should bo recorded to the noarest five (5) second division.

After leaving the terminal and before arriving at the first time point, checker should tally each stop as made and observe operating speed, in order that he may accurately grade this speed upon arriving at the next time point.

Just before reaching the time point, the checker should record the following data:

1. Number of stops cade between time points.
2. Passenger load (arriving).

This leaves the checker free to record at the time point:
3. Vehicle arriving time.
4. Average speed ("grade").
5. "Ahead" or "late" time.
6. Time used between time points.

After vehicle has left the time point, passenger load shall be recounted, and the heaviest load tabulated on the checling record, whether it be arriving or leaving.

Grading Speed

Experienceả checkers have found it advisable to classipy speed as follows:

1. Full speed.	(F)
2. Three-quarter specd.	$(3 / 4)$
3. Half speed.	$(1 / 2)$
4. One-quarter speed.	$(1 / 4)$

A vehicle is considered as being operated at full speed when the operator or crew is doing its very best to move the vehicle as rapidly as possible over its given route under the prevailing conditions. The following are some "abnormal" examples of "full speed" operation:

1. Vehicle handled by an exceptionally "fast" operator or crow.
2. Vehicle handled by a hard working, yet exceptionally "slow" operator or crow.
3. Vehicle progressing as fagt as congested traffic will permit.
4. Vehicle "dragged" by car ahead.

When a checker encounters any of the operating conditions described above, ho shall note them on his checking record. There may be many causes which can result in erading a vehicle operator or crew at a speed less than "full". Due to the many possible causes or combinations of causes which contribute to other than full speed operation, it is impracticable to stete derinitely in written instructions just when the $3 / 4,1 / 2$, or $1 / 4$ specd rating should be used. As in tho case of load checkers, it is necessary for a student riding checker to work with an experienced checker until he becomes sufficiently proficient in grading speed.

Riding checkers should thoroughly understand that operators are not expected to handle their vehicles in a reckless or unsafe menner in order to secure a full speed rating.

Tally Sheet

In ordor that checkors may properly distribute their time over the various running time periods of tho day, and thus guard against securing an insufficient number of rides during any one period, it is advisable that they kecp a record of the number of rides mode during the period of the checking assignment. A riding checker's tally sheot has beon devised for this purpose, and the manner in which it should be used is illustrated in Figure 17.

Miscellancous Instructions to Riding Checkers

1. All round trips shall bo started from the outer terminal.
2. Upon completion of a round trip, checker should drop back to the vehicle following.
3. Checkor should avoid riding vehicles which are late in leaving their outer terminals.
4. Checkor should avoid riding a vohicle which is proceded by onc that loft behind schedule at the outer terminal.
5. In the cvent that the vchicle being checked uses a different colum of running time on an outbound trif from that uscd on an inbound trip, checker should use a separatc record sheet for recording outbound trip data.
6. In the event that a blockade occurs on a line being chocked due to a fire, stalled vehicle, accident, etc., checking should cease until such time as vehicles are operating on rogular schedulc.
7. Cime lost duc to minor delays causcd by bridge openings, blockod railroad. crossings, ímproperly parked vehicles, single-track operation, ctc., shall be noted under "romarks" oppositc the time point affected by the delay.
8. Greasy or moist rail conditions caused by fallen leaves, cut grass,.rail "sweating", rain, etc., shall be noted on the checking rocord.
9. Checkers should use the following terms in describing woather conditions:

> Clear Cloudy Drizzlo Rain
10. Checkers shall deport themselves in accordance with the instructions for "Conduct" set forth in the "Goneral Instructions to Load Chockors".

FIGURE 17.
RIOING CHECKER'S TALLY SHRET,
SAMPLE COMPANY UNDER STUOY.

F. Frequency of Checks

The company conducts a regular, progressive and systumatic program of running time checks so that its schedule makers may be fully informed as to actual conditions at all times.

Undor this systematic program the lines of the system are checked with the following approxinate frequencies:

	Maximum No. of Poak Vehiclos	

Running time chocks are not mado during the summer months.
It is customary practice to check a line for running time over a period of one full week. Thursday being a light day on most lines, checkers are usually given this day off so that the other six days of the week may be checked.

In addition to the routine program of checks, special checks are conducted when warranted by the following conditions:

1. When routine checks indicate an abnomal condition developing on a line. The line may be checked for two consecutive weeks, or for two weeks at intervals, instead of the usual one week.
2. When roports from the Transportation Dopartmont indicate an abnormal or troublesome condition devoloping, such as difficult traffic concitions on certain lincs on certain days. The checking period may bo extended, or special chocks may bo made on the days and at tho times indicated in the Transportation Departmont roports.
3. When a linc is re-routcd for any significent portion of its longth. An adjusted running tine is utilized, based upon speciel checks.
4. When a lino torminal is extondod by any approciablo distance, or whon, more rarely, the distance to a line torminal is shortoned. An adjusted running time is utilized, bascd on special checks.
5. When a now schedulc has been placed in effoct using vehicles of a different sizo or typo than those formorly utilized on the line. Special ridine chocks are made in an fort to reduce the running timo as opcrators bocome moro femiliar with the now vehicle and the new schodule.

Extra trainmen are callod upon to neet any broad or extended progran of spociul checks. Sovoral trainmen are on call who have boon trained and dovelopod into capeblc and roliable running time chockers.

G. Sunmarization of Running Time Check Data

As in the case of passonger load check data, it is impracticable to obtain a mental picture of the running time actually required on any given line by merely looking et the individual chocking records forwarded to the schedule office by the riding checkers. For this reason a form has been developed for summarizing running time chock data so that the results of many checks may be studied simultaneously. This assombled data will, upon inspection, show how well the present running time is adapted to the actual conditions of operation, and provides the basis for necessary changes in the running time.

Figure 18 shows the "Running Time Summary Sheet" which is used by the company for summarizing riding check data. Before the observed data are inserted on this form, the sumary sheet is headed up with the following information:

1. Name of line.
2. Type of. schodule (weekday, Saturday or Sunday).
3. Dates of checks.

The time points are entered by name in the left-hand column of tho sheet. The actually observod running times are calculated in accordance with specific instructions which will be given below, and entered in minutes and seconds in the columns headed "actual" under each time period.

The detailod instructions for sumarizing riding check date. will now be presented in some detail.

Bofore a nev running time is worked up for a particular line, it is necessary to determine the average time required by the average operator or crew in moving the vehicle under actual service conditions from one ond of the line to the other, and roturn (round trip). This is ordinarily done by making a riding check for at least one full week.

Running Time Periods

After a riding check has boon made and tho data sheots have been sent to the office, they are separated into three groups, namely, (1) weekday (daily except Saturday and Sundey), (2) Saturday, and (3) Sunday. The weekday data sheets are ordinarily divided into eight smaller groups corresponding to the eight running time periods, as follows:

Running Time Periods

1. Early A.M.
2. A.M. Peak
3. A.M. Basic
4. P.M. Basic
5. P.M. Pcak
6. Early Night
7. Late IVight
8. Owl

Poriod Time (Innor Terminal)
First car to 6:29 A.M.
6:30 A.M. to 8:59 A.M.
9:00 A.M. to 12:59 P.M.
1:00 P.M. to 4:29 P.M.
4:30 P.M. to 6:29 P.M.
6:30 P.M. to 8:14 P.M.
8:15 P.M. to $12: 15$ A.M. 12:30 A.M. to last trip.

Segregation of Abnormal Checks

The next step is to take the individual check sheets for each runing time group and segregato those records which aro "cubnormal" from the standpoint of what might be considored to bo "average" trips. Tho avorage trips, as far as passenger loads are concorned, may be determined by roference to tho passenger load check sumary sheets. Some of the causes of abnormal trip conditions are:

> 1. Exceptionally heavy loads.
> 2. Exceptionally light loads.
> 3. Accidents.
> 4. Stalled vohicles.
> 5. Bridgo openings.
> 6. Railroad crossing dolays.
> 7. Slippery rails.

Fiding Check Sumnary Form

Having romoved the abnomal checks from the group, the next stop is to "post" the data for the "average" chocks on the "Riding Chock Surmary Shoct" which was shown in Figure 18. This form provides the eight columns necessary for ontering the running time check data from the individual trip rocord sheots (Figure 15). Each colum is so headod that the average time used between time points in minutes and seconds may be placed under the appropriate daily time period. The left-hand sido of sheet under the heading "Time Points" is reserved for listing the names of the time points being chocked.

Running Tine Adjustant Form

After the summary sheet lias becn proparcd by properly heading the sheet and listing the time points for tho line under consideration, the "Running Time Adjustment Shoct", Figure 19, should be placed in a position that will make it readily available for constant reference.
CxyPark Buc LINE
Dreaday through Friday SCHEDULE

$\frac{\text { TIMR USED }}{\text { BETWEES }}$ TIME POINTS		Graded Speed			
		P	3/4	1/2	1/4
2:30 to	3:00	0	10	30	45
3:00 to	3:30	0	15	35	50
3:30 to	4:00	0	20	40	55
4:00 to	4:30	0	25	45	60
4:30 to	5:00	0	30	50	65
5:00 to	5:30	0	35	55	70
5:30 to	6:00	0	40	60	75
6:00 to	6:30	0	45	65	80
6:30 to	7:00	0	50	70	85
7:00 to	7:30	0	55	75	90
7:30 to	8:00	0	60	80	95
8:00 to	8:30	0	65	85	100
8:30 to	9:00	0	70	90	105
9:00 to	9:30	0	75	95	110
9:30 to 10	10:00	0	80	100	115

The running time adjustment shect represcnts the correotions for differcnt conditions of observed speed which have been built up over a period of years as the rosult of experience. The forin is, of course, tied in with the "grading" of speeds, which was discussed on page 45. These "correcting" figures have proved their accuracy and value in mecting the conditions of the sample company as evidenced by the many successful running tine changes, both positive and negative, which have been made through the years.

Avcraging Running Time Check Data

The next stop is to begin averaging the running time check data by periods. Assume that a new running time is to be worked up for the line under study. The first period to be worked up is the Early A.M. The data are worked out beginning with the first time point after leaving the outer terminal of the line, progressing fron time point to time point until all of the available checks for the Early A.M. period have been utilized. In this process all specds graded other than "full" (F) must be brought up to full speed, usineg the running time adjustment chart (Figure 19) in the process. These full specd times are totalled and divided by the number of checks used in order to get the average full speed running time for the given time point during the Early A.M. period. This avorage calculated time should then be placed on the "running time summary sheet" (Figure 18) in the appropriate colurm. The time is entered in minutos and seconds. This procedure is repeated for each time point until the inner terminal of the line is reached. At this point the "actual" coluran of the running time summary sheet is totalled. This total is the inbound running time in minutes and seconds that should be used from the outer terminal of the line to the inner terminal.

This process of calculating the full speed running times is continued for cach of the time points on the outbound route, beginning at the inner terminal of the line. Upon completion of the tabulation for the outbound direction, the inbound and outbound figures arc added to obtain the round trip running time.

A similar procedure is followed in averaging the running times for each of the other daily periods.

An example will be given at this point, utilizing data for the A.M. Peak period in the "reverse" or outbound direction. The figures chosen were taken from a week's running time checks, from which serics of obscrvations cight (8) "normal" checks are available. The data from these chocks, together with the speed gradings and an estimate of the possiblc "full speed" time, arc given below:

Obscrvations Taken From	Chock Tine Used (Min.)	Speed Graded As	Possible Full Speed Time
First data shoet	7:00	3/4	6:05
Sccond data sheet	5:50	F	5:50
Third data sheot	5:55	F	5:55
Fourth data sheet	6:00	F	6:00
Fifth data sheet	6:55	3/4	6:05
Sixth data sheet	6:50	F	6:50
Seventh data sheet	6:10	F	6:10
Eighth data sheot	6:20	F	6:20
	rage (TOTAL	TVided by 8	$\begin{array}{r} 49: 15 \\ 6: 09 \end{array}$

It will be noted that in all cases except the lst and 5 th data sheets, spoeds wero graded as "full" (F) , in which case the chock time in minutos and sconds as obsorvod was carried acrose into the fourth column of the tabulation.

In the case of the first data sheot, the obsorvation " $7: 00$ ", meaning 7 minutes and no seconds, was accompanicd by a speed gradins of $3 / 4$. Reference to the running time adjustment chert, Figure 19, shows that for a time of $7: 00$ to $7: 30$ under a $3 / 4$ speed grading, 55 seconds should bo deducted from tho observed time in order to bring the vohicle up to full speed. This doduction of 55 seconds from 7:30 gives the $5: 05$, or 6 minutes and 5 seconds, entored oppositc "First data shoet" in the fourth column of the above tabulation.

In the case of the fifth data shect, the observed time of $6: 55$, or 6 minutes and 55 seconds, is accompanied by a speed erading of $3 / 4$. Feforonco to tho running timo adjustment chart, Figure 19, shows that for time obscrvations of $6: 30$ to $7: 00$, a doduction of 50 seconds is necessary when the speed is graded as $3 / 4$ in order to bring the vehicle up to full speed. This deduction of 50 seconds from the 6:55 obsorved time results in the 6:05 ontered under colunn four opposite the first column entry of "Fifth da.ta shoet"。

At this point the fourth column hoaded "Possiblo Full Speed Time" may now bo totalled. The total of the eight observations is 49 minutes and 15 soconds (49:15). This total is divided by 8 , the number of observations contributing to the total, in order to get the average for the time point indicated in the outbound direction during the A.M. Poek period. This quotient is 6:09, or six minutes and nino seconds. This figure is cntered on tise running time sumary form, Figure 18, opposito the first time point in the outbound direction under the A.M. Peak colum.

A similar procedure is followed in avcraging and ontering the running tinos for each of tho other daily poriods.
City Pank Bue LINE
DATLY EXCIAPI SATURDAI AND SUNDA
DATE Weak of nov. 26,1945

	EARLY A. M.	A. M. PRAK	A.M. BASIC	P.M. BASIC	P. M. PKAK	EAFLY NICHT	LATIS NICHF	OUIL
INBOOND TRIPS								
Number of trips	3	10	8	13	9	1	12	
Average stops	21		23	23	23.	1	16	
Arorage stopping time	120	344	293	299	288	256	178	
Averago load	22		36	32	25	23	178	
Averago stops por mile	6.8		7.5		7.2	6.8	5.2	
Average sec. per stop	10.5	13.8	12.7	13.0	18.1	12.3	11.1	
OUTBOUND TRIPS								
Number of trips	4	8	11	15	9	5	10	
Average stops	16	21	21	22	23	20	19	
Arorage stopping time	197	259	233	251	284	186	176	
Average load	13	29	20	25	56	27.	28	
Average stops per mile	5.2	6.9		7.2	7.5	6.6	6.2	
Average sec. per stop	12.3	12.3	$11,1$	11.4	12.3	9.3	9.3	
				TRIP				
Average stops	37	46	44	45	45	41	35	
Average stopping time	417	603	526	550			854	
Average Ioad	18	42	28	34	41	25	20	
Areraze atops per mile	6.0	$-7,5$	7.2	7.4	7.4	6.7	5.7	
Average sec. per stop	11.3	13.1	$12,0$	12.2	$12,7$	10.8	10.1	

RIDIMG CHECK SUNARI SHEET

Cisty Park BuN LINe 2 3 3 3 3 3 3 3 3 3 3 3 3

Daily, Except tat, Ed Dundays $\underbrace{}_{\substack{\text { Honth } \\ \text { Voar } \\ \text { Voar }}}$

It is customary for riding chockers to carry a stopwatch when making running time check. This watch is used to record tho cumulative stop tine for each trip. The stop time is noted on the riding check sheet (see " $5: 15$ " and "3:40", Figure 15), and is used in conjunction with the other obsorvations takon to compute the average duration of time per stop.

Figure 20 is a tabulation of derived data on stop frequency and duration calculatod from the sories of running time checks taken for the line under study for the week of November 26, 1945. The following information is included for soven of the eight daily time columns:

```
Number of trips
Avorage number of stops
Average stopping time, seconds
Average load (passcngors per trip)
Avorage number of stops por mile
Average duration of stops, scconds.
```

For example, durine the A.M. Peak period on inbound trips there wore, on the ten trip-observations considered, an avorage of 25 stops per trip with an average "total stopping time" per trip of $3^{1 / 4}$ seconds. This is equivalent to an average duration of 13.8 seconds per stop. The inbound distance (Figure 7) is 3.066 miles, so that the average number of stops per mile during the A.M. Peak inbound is 8.2. The average passenger load per bus during this same period is 55 persons. Information of this type is commonly known as "Service Data", and is helpful to equipment and schedule engineers and others concerned with the operating performance of transit vehicles. Havine a knowlcdge of the porformance characteristics of the vohicle (acceleration, braking, "speedtime" curves, etc.) and the "service data" (average load, frequency and duration of stops) it is possible to estimate with considerable accuracy the probable schedule specd performance and running time requirements of a given line. These "theoretical" calculations of ten serve as a check on the actual performance being obtained in sorvice.

The "Riding Check Summary Sheet" is shown in Figure 21. This record consists of a set of eight (8) similar shects - one for each daily time period. The particular sheet shown in the figure is the one for the A.M. Peak period. The data fron each running time summary (Figure 18) are posted on these sheets so that a progressive record of running time observations and their trends may be availablc to the schedule makers.

H. Layover, Recovery or Headway Ad.justment Time

The "layover", "recovery", or "hoadway adjustment" time (sometimes referred to as "drop back") is built into the schedule as a "cushion" to take care of the rinor delays and interferences which occur along the line. This permits an operator to leave the terminal in accordance with the prescribed table of doparting tines even though he may have arrived at the terminal a little latc as the result of such interforences.

The layover time allowance also provides an opportunity for the operatcr or crev to get a drink of water, smoke, or avail themselves of the rest room facilities.

On the sample property layovers are provided at the outer terminals of lines, as most lines "loop" in the central business district. Exceptions arc two major lines which have a physical terminal in the business area, and

FIGURE 22.
two long, outlying crosstown bus lines, which are subjected to interference at several railroad crossings. In these cases layover is allowed at both ends of the line.

On the sample property the layover time allowances average approxirnately ten per cent of the scheduled running time on lines requiring 40 to 45 minutes per round trip, and approximately seven per cent on lines requiring 60 to 65 minutos per round trip.

I. Preparation of Running Time Sheet

One of the most important details of schedule building is the allotment of the proper amount of running time so that the average crew or operator may operate the schedule efficiently during the different periods of the day. The work of building a new schedule actually starts with the preparation of a new "Running Time Sheet" (see Figure 22).

As previously explained, the data used for building a running time for a particular line are based upon riding checks taken during the various periods of the day for a sufficient number of representative days. These checks, when totalled and averaged according to the instructions in a preceding section, will give the time in minutes and seconds that would be used by an average operator or crew for full speed operation ("F"). As these averages are worked up they are placed on the "ridine check summary sheet" (Figure 21).

Comparison of the Running Time Summary Sheot

with the Schedule in Effect
Having determined from the riding chock summary sheet the amount of running time necessary for the new schedule, the next step is to compare the summary sheet with the schedule in effect in order to find the running time differonces. This comparison is mado by tabulating by time points on the present running time sheet any proposed running timo which is different from the one in effect. The running times which do not change aro simply checked off. This comparison of present and proposed running times on the sample property is usually shown in blue pencil, so that any difference between the old and new running times may be detected moro casily.

In setting up the running time for the new schedule fractions of a minute are not used. It becomes necessary, thorefore, to "give and take" with fractions of a minute as between a givon time point and the adjacent ones. In any cvent, the total time for the round trip as experionced in whole minutes must be equal to or greater than the "fractional" running time of the summary sheet, and must in no case be cut below the calculated total.

Preparing tho Running Time Shoet

The next step is to prepare a pencil copy of the new running time shect, showing the time points and the running time period headings (see Figure 23). The following information is laid out on the blank sheet:

```
1. Name of line.
2. Schedule in effect (identifying numbor).
3. Tyye of schcdule (weokday, Saturday or Sunday).
4. Time points (names).
```


FIGURE 23.
PENCIL COPY OF RUNNING TIME SMEET -
5. Running time period headings.
6. Proposed running time by periods and by time points (taken from the summary sheet).
7. Distance headings.
8. Spead headings.

When new scnedules are made, the time point locations are rarely changed unless conditions warrant such change. The running time period headings usually remain the same, and are changed only when a shift in passenger travel is detected on the "Passenger Check Sumary Sheot" (Figure 14). When such shifts in travel occur, then changes in running time period headings are made ascordingly.

After preparing the pencil copy of the running time sheet (Figure 23) as described above, the running times are taken from the running time sumnary sheet (Figure 21) and entered (as whole minutes) on the pencil copy. This coimpletes the time coluans except for the entering of the "headway adjustment time" ("drop back"), which is added at the bottom of the sheet following the total round trip running time to get the overall scheduled time for the round trip.

The smaller circled figures appearing to the right of the running times in Colums C, D and E of (Figure 23) are the times from the respective line terminals to the inbound and outbound "relief" points (Rel.) of the line (see GIossary for definition of "relief point"). In column C, for example, the running time of four minutes from Dumaine and Alexander Streets to Orleans and Moss Streets, and the time of three minutes from the latter intersection to the inbound relief point at Orleans and Broad, are combined to give seven minutes, the time in the small circle. Similarly, on tho outbound trip the time from the inner terminal to the outbound relief point is 6 plus 4 , or 10 minutes.

The larger circled figures appearing below the time columns for each direction of travel are the "running times" to be used in the construction of schedules. In column B, for example, the circled figure " 18 " is the inbound running time of 18 minutes shown immodiately above it as the B column total. The circled figure " 20 " is the sum of the outbound running time of 16 minutes plus the "drop back" (headway adjustment) time of four minutes, which gives the total time aspociated with the outbound trip.

These figures are circled for the convenience of the schedule maker.

Mileage Data for the Running Time Sheet

In order to assist the schedule maker in setting up running times which will not make the speeds between tine points excessive or unsafe, all running times are shown as "speed" on a miles per hour basis. Hence, it is necessary that the distances between time points, as well as the half-trip and round-trip total distances, be known. These distance figures are obtained from the route map for the line (Figure 7).

Working with the route map, distances are ascertained and entored on the pencil copy of the running time sheet opposite their respective time points. This is done for each individual time point, as well as for the inbound trip total, outbound trip total, and total round trip.

The final stop in the completion of the running time sheet consists of calculating the speeds (1) between time points, (2) for the inbound trip. (3) for the outbound trip, and (4) for the total round trip. This last figure is the round-trip running speed from outer terminal back to outer terminal. The overall round-trip schedule speed is determined from the total round-trip time, including headway adsustment time.

Speeds are calculated by first multiplying a distance by 60 and then dividing this product by the time required to travel from one point to another in minutes. The following examples, based upon the data shown in Figure 23, describes how this is done:

Speed $=\frac{\text { Distance }}{\text { Time }} \quad$ Speed (in M.P.H. $)=\frac{\text { Distance (in Miles) } \times 60}{\text { Time (in Minutes) }}$
Exaraples:
(1) Period B, Inbound, Dumaine and Alexander to Orleans and Moss

$$
\text { speed }=\frac{0.763 \times 60}{4}=11.47 \text { M.P.H. }
$$

(2) Period C, Inbound, Dumaine and Alexander to Dauphino and Canal

$$
\text { Speed }=\frac{3.066 \times 60}{17}=10.82 \text { M.P.H. }
$$

(3) Period D, Round Trip (Running Speed excluding Layover)

$$
\text { speed }=\frac{6.119 \times 60}{34}=10.80 \text { M.P.H. }
$$

(4) Period D, Round Trip (Schedule Speed including Layover)

$$
\text { Speed }=\frac{6.119 \times 60}{38}=9.66 \mathrm{M} . \mathrm{P} . \mathrm{H}
$$

A "specd chart" has been devised by the Schedule Department to facilitate the work of computing speeds for the running time sheet. This chart consists of previously calculoted speeds corresponding to the various running times which would ordinarily be associated with each line of the system. Then as the running times for a given linc and deily timo period are lengthened or shortened, speeds may be read directly and entercd on the running time sheet. It is, of comese, necessary to revise this chart
whenevar a clagge in route length occurs.
A further discussion of the use of the Running Time Shect in determining new headways when new sobedules are to be constructed will be included in the next section of this report under the discussion of "HEADWAY ORDER".

TEE EFADWAY ORDER

\therefore this point it is suggested that the reader of this report refer back to Fisure 2 - "Scheduie Development Chart" to briefly review the "flow" of the steps in the schedule makirg process of the sample company. Reference to this chart shows that the Headway Order serves as a "hopper" into which the raw materials for "ranufacturing" a schedule are poured. It is the focal point to which all field data and derived calculations are dram before the actual steps of schedule preparation are begun. It is considered to be of such inportance by the company that Eeadray Orders are issued by the Superintendent or the Chief Schedule Naker only.
A. Importance of the Headway Soccification or Order

The Feadway Order is of primary importance in the schedule making process for the following reasons:

1. It is the "key" to the efficient expenditure of the platform labor dollar, as it specifies the amount of service to be operated during the various periods of the day.
2. It serves as an instruction sheet for the schedulo raker, who must follow it exactly.

The Headway Order and the "Running Time Sheet" (Figure 22) together contain all the information necossary for building a "Terminal sheet" or tire-table.

As the headway order is utilized by this company, it may be likened to a doctor's prescription. It prescribes, in the case of lines that are slightly abnormal, definite instructions for putting those lines back into a "healthy" condition. In the case of lines that are unprofitable, it can only alleviate to a vertain extent the losses that ere being incurred. In the latter cases a "major operation" may be indicatod, such as the abandonment or services, their substitution with another vehicle size or type, short-lining, or rerouting, in order to correct tho unfayorable conditions which exist.

B. Sources of Information

In building a hoadway order for a transit line, it is necessary that the proper amount of running time for the nev schedule be known. The method used in allotting the proper amount of running has been explained, and the preparation of the running time summxy sheet has beendescribed in detail in Chapter III - 'Running Time Check."

In addition to the running time, a sufficient number of passenger load checks, teken at the maximum load point, must be tabulated on a form which will show the average number of passengers per vehicle over a 15 - or a 30 -minute period, dopending upon the time of day. The development of the passenger load summary sheet was described in detail in Chapter II - "Passenger Load Check."

These tro sources of data are considered the primary data required for schedule builaing by the compeny. While the schedule department relies chiefly on them for detorminine headways, there are other valuable sources of information that may be used in determining whether or not the schedule in effect is physically or econonically sound. Such secondary information pertains to each indiridual line, and includes the followine:
DAILI SWITCHING REPORT
Schedule Dopartment
LINE CITY PARK BUS MONTH MAY 1946

		\rightarrow			1		\rightarrow		-1		0 -1										-1	-	or
¢ 込		0		-	1		1		0		1										1	1	θ
-8\%			1																				$\$
8 \% ${ }_{\sim} 8$																							
8\%8																							
¢ $\begin{array}{r}8 \\ \hline\end{array}$																							
																					H		
8																							
8 ¢0\%																							
8\%8				H																			
¢ 8 ¢ ${ }^{\circ} 8$																							
888											M											H	
888																							
808																							
8 8융					N																		
8 8\%8		N					M																
$\begin{array}{ccc} 8 & 9 & 8 \\ -1 & \\ -1 \end{array}$																							
$\begin{array}{r} 8: 8 \\ 0 \\ 0 \\ \hline 1 \end{array}$																							
$\begin{array}{r} 8.8 \\ 0 \\ \hline \end{array}$.										,			
8 \% $\%$																						N	
8\%8									\cdots														
888																							
88																							
888					$\#$															1			
																						5	$\begin{array}{ll} 0 & A \\ 0 & 0 \\ -3 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 2 \\ B & A \end{array}$

FIGURE 24.
DAILY SWITCHING REPORT -
SAMPLE COMPANY UNDER STUDY.

1. Trend charts of
a. Passenger revenue
b. Car hours) See Figure 5.
c. Revenue per car hour)
d. Total passengers
e. Total passengers per car hour
2. Reports on vehicles switched short of terminals because of schedule or other causes. (See "Daily Switching Report" - Figure 24).
3. Speed charts by running time periods.

These secondary data serve as a guide to the schedule maker in formulating judgments and making decisions in the preparation of the headway order.

The following are examples of the use of these secondary data:
The daily switching report for the month of May, 1946 (Figure 24) indicatos very little switching of vehicles due to schedule causes. A large number of such switchings would indicate the need for a thorough study of passenger load and running time data.

The revenue trend chart in Figure 5 shows a comparison for the current year with the year before as to revenue, hours and revenue per hour. The consistent increases in revenue and revenue por hour during the spring of 1946 over the corres ponding values for 1945, together with the corresponding passenger load checks, pointed up the needed schedule-change which is discussed in this report.

C. Loading Standards

Before prescribing headways for any line, it is necossary that the schedule maker know the normal passenger capacity, in terms of seatcd and standing loads, for the various types of venicles available to meet the schedulc. With this information at hand, it is possible for him to build a schedule using these vobicles in such a way that uncomfortable overloads may be avoided, while at the same time using the minimum amount of running time and the minimum number of vehicles in the interest of economy.

The schedule departmont of tho company has determined upon the following loading stendards for its vehicles which will under its specific local conditions, operate the schedules officiently, while giving maximum service at minimum cost:

NORMI IOADING STAIDARDS

Type of Vehicle	Class of Vehicle	Seating Capacity	Basic Standerd		Peak Standard	
			Passengers	\% Load	Passenzors	\% Load
Street Car	400	52	52	100	85	163
Street Car	3/900	52	52	100	85	163
Street Cair	1000	52	52	100	85	163
Trolley Coach	1200	44	44	100	58	132
Motor Bus	1500	40	40	100	53	132
Motor Bus	1400	35	35	100	46	131
Motor Bus	1300	31	31	100	41	132

The loading standards for the vehicles in the above table were determined in the following manner:

Abstract

STREET CARS - The present loading standard of 85 passengers in the peak periods has been determined as the result of experience over a long period of years. Observations were made of the manner in which patrons distributed themselves over the floor space throughout the car under different conditions of loading. Such items as aisle congestion, interference with the ingress and egress of boarding and alighting passengers, and etc., were taken into account. Schedules were built around various average peak loading standards, and the porformance of operators and crews under these various experimental conditions was studied. For instance, loading standards of 90 passengers per car were used for an experimental period, but it was found that this tended to cause the schedule speed during peaks to fall off. A reduction was made to 85 , which has proven satisfactory from both standpoints - namely, load and speed.

TROLLEY COACHES AAD MOTOR BUSES - The present loading standards set forth in the foregoing table were also determined as the result of experience over a period of years. Observations were made of the manner in which patrons distributed themselves throughout the available standing space in the vehicle under different conditions of loading. Various loading standards wero experimented with, and the resulting operating performance under actual operating conditions was observed.

The loading standards used in this case may appeal to the reader of this report as being rather low, but it must be remembered that these are the average loading standards over a fifteen minute peak period, and that the loads on individual vehicles may vary widely, some of them reaching well above 150 percent of the normal seating capacity. The sample company has a problem of segregating the races in vehicles under state law, which gives rise to the presence of vacant seats in the rear of a vehicle at times when other portions of the vehicle are filled with seated and standing passengers.

The company maintains drawings of the floor layouts of its various sizes and types of vehicles, upon which are designated the number of passengers in each section of the vehicle which have been found from experience to give the best compromise between a comfortable service to the public and an economical service to the company.

There are many other ways of determining the peak loading standards of vehicles, and the reader is referred to Parts II and III of this study for such alternative methods.

The peak loading standards shown in the preceding table apply only on lines which have heavy passenger travel and which operate on close headways. On lines where travel. is light and headwaus far apart, it is apparent that if headways were furnished in accordance with the amount of business offered the interval between vehicles might be as long as 15 or 20 minutes. To meet this situation a "sliding scale" has been worked out whereby, as headways get longer, the loading standard becomes lower. The following table for street cars demonstrates this sliding scale:

IIMITING HEADWAY LOADING STANDARDS FOR PEAK PERIODS (400-800-900-1000 Trpe Steel Street Cars)

1
$l \frac{1}{2}$
2
$2 \frac{1}{2}$
3
$3 \frac{1}{2}$
4
$4 \frac{1}{2}$
5
$5 \frac{1}{2}$
6
$6 \frac{1}{2}$
7
$7 \frac{1}{2}$

$\begin{array}{c}\text { Average Passengers } \\ \text { per Car }\end{array}$

85
85
85
85
85
80
80
75
70
65
65
60
55
55

Thore are occasional special. emergency cases whero loading standards are disregaided and service is furnishod according to the type of load.

D. Headway Order Shect

A sample Headray Order sheet for the line under study is show in Figure 25A \& B.

The information set forth on this control form are as rollows:

1. Terminal leaving times of first and last vehicles.
2. Headway, or interval in minutes betveen vehicles, during different periods of the day.
3. Inunber of vehicles used during the difiorent periods of the day.
4. Confirmation of the total round trip time.

The sheet is hoaded with the number of the hoadway crder, the number of the new schedule to be prepered, the name of the line, the typer of schedulo (weokday,

SCHEDULED HEADWAY ORDER

Saturday, Sunday, holiday), the date, and the names of the person preparing the headway order and the person who checked his work. Columns are provided for the number of units, the running time, the headways in minutes, the names of the line terminals, and "remarks".

Bofore discussing the method of preparing the headway specification, some attontion will be given to mothods for calculating "headway" and "changes in headway".
E. Procedure for Calculating Headway and Changes in Headway

In preparing the Headway Order, the numbers of vehtcles required at different times of the day are determined through an examination of the loads to bc handled during those daily periods and the loading standards of the vehicle to be used for those corresponding periods. In each instance the passenger load to be handled in a given time interval is determined from the summary sheet and divided by the loading standard of the vehicle for that time period to determine how riany vchicles must pass the maximum load point during that interval in order to handle the passenger load. The corresponding hoadways are determined by dividing the round-trip running time by the number of vohicles to be used.

When the round-trip running time is exactly divisible by the number of vohiclus to be used, and no whole or half minutes are left over, the calculation of headway is a simple mathematical task. The followine examples serve to illustrate the calculation:

No. of Vehicles to be Used	Running Time in Minutes		Proposed Headway in Minutes
4		40	10
12	84	7	
6	36	6	
5	45	9	
6	30	5	

When the round-trip running time is not exactly divisible by the number of vehicles to be used, then it is necossary to determine the number of vehicles to be oporated on a whole minute headway, and the number of vehicles to be operated on a hale-minute headway. The probloms shown below illustrate how this should be done:

$\frac{$| Number |
| :--- |
| of Cars |}{8}$\frac{$| Running Time |
| :--- |
| (In Minutes) |}{35}

Allocated Vehicles and Headways $\frac{\text { Cars }}{2} \frac{\text { Headway }}{4} \frac{\text { Cars }}{6} \frac{\text { Headway }}{4 \frac{1}{2}}$

1. The number 35 is not evenly divisible by 8.
2. Three minutes are left over.
3. Reducing the three minutes to half-minutes will give six one-half minutes intervals.
4. Therefore, increasing the headway on six vehicles by onehalf minute to use up the "left-over" time, will give six vehicles on a four one-half minute headway.
5. The two romaining cars will operate on the four-minute headway.
6. The result will be six cars on $4 \frac{1}{2}$ minutes, equalling ($6 \times 4 \frac{1}{2}$) 27 minutes, and two cars on 4 minutes, cqualling (4×2) 8 minutes, a total of 8 cars and 35 minutes.
$\begin{aligned} & \text { Number } \\ & \text { of Cars }\end{aligned}$
7 $\begin{aligned} & \text { Running Time } \\ & \text { (In Minutes) }\end{aligned}$
$\frac{\text { Allocated VohicJes and. Headways }}{\frac{\text { Cars }}{4} \frac{\text { Headway }}{7 \frac{1}{2}} \frac{\text { Cars }}{3} \frac{\text { Headway }}{8}}$
7. The number 54 is not cvenly divisible by 7 .
8. Five minutes are lef't over.
9. Reducing the five minutes to half-minutes will give ten one-half minute intervals.
10. Therefore, increasing the headway on all vehicles by one-holf minuto will use up seven of these half-minute intervala, leavine three one-half minute intervals as yet unuscd.
11. Increasing the headway on three cars (on the $7 \frac{1}{2}$ minute headway) by onc-half minute, will give three cars on an 8 minute headway interval; this uses up all the "leitover" time from the initial division.
12. The four remainine cars will operate on the $7 \frac{1}{2}$ minute headway.
7.. The result will be three cars on 8 minutes, equalling (3×8) 24 minutes, and four cers on $7 \frac{1}{2}$ minutes, equalling ($4 \times 7 \frac{1}{2}$) 30 minutes, a total of 7 cars and 54 minutes.

As an example of how headways are changed to bring the average passenger load per car back to normal, assume that the peak loading standard on a certain type of strect car is 78 passengers, and that the passenger load summary shect shows that an average of 90 passengers por car is being. handled with cars scheduled to operate on a $4 \frac{1}{2}$ minute headway. It is evident from these assumptions that the cars are being overloeded, and, in order to correct the condition, additional cars should be opcratea on a more irequent headway.

The calculations required in determining the new headway are:

$$
\begin{array}{ll}
\text { INumber of one-half rainutes in } 4 \frac{1}{2} \text { minutes } & =9 . \\
\begin{array}{ll}
\text { INumber of passengers handled per one-half ininute } \\
\text { cquals } 90 \text { divided by } 9
\end{array} & =10 . \\
\begin{array}{ll}
\text { Number of one-half minutes required in proposed } \\
\text { headway equels } 78 \text { divided by } 10=7.8 & =8 . \\
\text { or, } 8 \times \frac{1}{2}=4 \text { minutes. }
\end{array}
\end{array}
$$

F. Preparing the Keadway Specification

The following data have been summarized in greatly condensed form from the superseded running time sheet (not included in this volume):

	$\begin{gathered} \text { A. } \\ \text { Early } \\ \text { A.M. } \end{gathered}$	$\begin{array}{r} \text { B } \\ \text { A.M. } \\ \text { Peak } \\ \hline \end{array}$	$\begin{gathered} \text { C. } \\ \text { Basic } \\ \text { Early Night } \end{gathered}$	D. P.M. Peak	E. Late Night	F. "OwI"
Inbound Time	16	18	17	17	16	13
Outbound Time	16	16	17	18	16	15
Headway Adjustment	4	4	4	4	4	32
Total Outbound	20	20	21	22	20	47
Total Round Trip	36	38	38	$\overline{39}$	36	60

Tho corresponding data, as oxtracted from the new running time shect (Figure 22), are as follows:

NEW RUNNIING TIME, MINUTIES

	A. Early A.M.	B. A.M. Peak	C. Basic Early Night	$\begin{aligned} & \text { D. } \\ & \text { F.M. } \\ & \text { Peak } \end{aligned}$	E. Late Night	F. "Owl"
Inbound Time	16	18	17	17	15*	13
Outbound Timo	15*	16	16*	17*	16	15
Headway Adjustment	4	4	$1+$	4	4	32
Total Outbound	19*	$\overline{20}$	20*	21*	20	47
Total Round Trip	$35 *$	$\overline{38}$	37*	38*	35*	60

Thus, in proparing the Hoadway Order, the schodulo makor must take into account the lowered running timo for the now schedule which is indicated for five of the seven daily poriods.

The passenger load data upon which tho now schedulo is to be predicated is show in Figures 26, 27 and 28. Each of these figures is a composite illustration which includes portions of several shoets of the passonger load summary. For example, the inbound postions of shoets \#l, 2 and 3 aro shown in Figure 26; the outbound portions of sheets \#4, 5 and 6 are show in Figure 27; and the outbound portions of shects \#7 and 8 (including a trip sheet analysis oi tho loada on the "owl" run) are shown in Figure 28.

The following probloms preson' themsolves upon study of these passenger load summarios:

1. (Figure 26) Loads arc satisfactory fron the beginning of the scheaulc through tho 7:15-7:30 A.M. 15-minute time band. In tho 7:30-7:45 time band, however, the individual buses carry persistont overloads - on successive days tho avorage loads under the old schedule run 65, 61, 52, 61 for vehicles which seat 40 passengers and havo a poak loading standard of 53 , and 17 or the 20 busos appearing in this band are circlod to denote overloads. Some reliof is roquired in this period.

PAS	ENG	GER	CHEC	KS					SENG	GER	CHEC	K8		-	PAB	SENC	EER	CHEC	K8		
: DIV	ION							E DIVISION							ミ DIVISION						-
SChequte time at daidreial a Caral.								SChEOULE TIMEAT DMJPATES A OMAM													
TMos	$\begin{gathered} \text { •CHED } \\ \substack{\text { CHITR }} \end{gathered}$	ToEs. $4-2$	$\left\lvert\, \begin{aligned} & \text { KSD } \\ & \operatorname{LDO} \end{aligned}\right.$	$\begin{aligned} & \text { TBNL } \\ & 4-26 \end{aligned}$									$\begin{aligned} & \text { TUESO } \\ & \mathrm{B}-11 \end{aligned}$	OAT	TRAN:			1.3. nelo LoA	$\begin{aligned} & 5 \text { 5ant } \\ & 4=10 \\ & \hline 000 \end{aligned}$	$\begin{gathered} \text { 3ubur } \\ \text { Bond } \\ \hline \text { Lono } \end{gathered}$	
10	130	24		39	28			- 13	de	24	4	50	4		- 11	Bral	(10)	4	ω	40	50
12	1421	28.7		23 ,4				14	01)	47	57	33	43		12	5851		(38)	(10)	34	sm\%
15	148			38	42			13	482	453	30 88	31.8	21.3		13	5	11.1	524	(4)	4 *	Sent
1	154	20.108	28.6	35.	50 is			16	48	30	36		28		14	558		51		63	sn
4	20021	${ }^{28}$	${ }^{35}$	37	te			18	408	38 _.9.	37,	36 .a2	38.4		18	540	85	40	89	6	809
8	207	4.3,	58.	358	46 4				431	(55)	4	${ }^{51}$	38		16	54				40	$\operatorname{swn} x$
10	23	40	31	30	-		$3{ }^{8}$	1	44	Bl_{48}	$25 \quad 40$	18 -	484		17	544	44	41.8	180	38 mi	Cater
12	219	29	36	48	(59)		1%	4	45		34		38		18	847	49	35	8	4	546
15	286	49 Mm	$12 \quad .9$	$39 \quad 1 \%$	46.93			3	440	51	46	48	${ }^{\text {B }}$		7	56	32	3	84	\%	9*
1	238	48		30	30		20	6	$4{ }^{4}$	58.	- 32 201	30.80	45.40		1		50 *	4.4	27 m	84	5002
4	2371	2	149	43	${ }^{28}$		*	0	44818	48	3	82	38		2	8531	51	4	40	(12)	2 SOH
8	243	so or	48.4	38 sm	8o	42 321	R42	9	447	4	46	0	36		4	558	5	45	48	88	360
8	2488		3	30		29	24.2	10	450	(B) 50	(62) 4	(5)44	(64) 42		8	380\%	He ${ }^{\text {a }}$	88 A7	9	40 nem	Sart
10	254	45	4	34		29	28.3	11	45	(19)	48	c	4		θ	801	(1)	48	47	ω	- 0.0
12	239	43.304	22 20x	4.189	-0	28128	3	12	43.3	60	16	52	28	Y	8	6034	(8)	(2)	(38)	(14)	6.4
13	304	32	45	24		46	902	13	$488 \frac{1}{2}$	32	4	(36)	45	$3{ }^{3}$	9	808	(10) 57	(67) σ_{7}	32.1	$35 \sim$	60
16	309	19	38	38		48	304	16	459	(63) 81	(2) 2.09	12 sod	$45 \mathrm{Ag1}$		10	6001		(6)		(0)	6.0
1	314	52 ar	29 \%	43 33		27.7	3	13	301	(12)	(72)		3		11	611		52			6nex-
4	319	24	46	24		38	918	16	503 ${ }^{\text {2 }}$	45		46	(68)		12	6251	43 3s9	(86) 340	44	88 8,	14
6	384	42	129	47		80	s, ${ }^{\text {a }}$	17	S081	34 sz	82 *9	43.5	$38 s_{2}$		- 13	816	(30)		40	30	$0 \sim 5$
8	328	23.2	32.	27.200		42 nal	,	18	508	(60)	so	(37)	(37)	Sog	13	828	42	38	38.4	\cdots	${ }^{6}$
10	332	13	28	28		${ }^{2} 8$	292	7	520	82	(73)	(38)	(84)	510	26	682		48	35	31	64
12	33514	4	15	ฯ		2	336	1	5121	(62)	(B)	(6)	4	512	17	880\% 4	50	se	\%	2	4040
13	339	18	30	80		58	840	2	B14.	49 ms	(13)	(83) $, 9,1$	(20) 36		$?$	889	32.10	37			on
13	$348 \frac{1}{2}$	- ${ }^{\circ}$	$50 \quad 34$	31-19		23.3	94.4	4	517	(13)	(80)	(21)	(15)	$6 / 6$	2	635		59	42	13	42
16	346	49	36	43		43	+	B	$819 \frac{1}{2}$	(81)	(67)	(2)	(62)	518	8	${ }^{630}$	45	43	25	20	637
18	349	52	29	26		43	*)	6	521	3351	(24) 68	49 63	(36) st	320	B	643	ses,	112	28 a9	38.4	6×2
7	\%\%	4	4	42		88	s51	8	584	So	(21)	(60)			9	6 4t	se	18	4	20	647
1	353	25	41			23	2	8	3881	(30)	(76)	(65)	(62)	5×6	12	888	46	∞	28	58	6 m
4	588	33×25	(3) Pos	Si, w		36244	${ }_{3}{ }^{3}$	10	828	(82) 140	(63) 40,	(6) 178	(84) seg	528	18	688	185	-	19 '91	- 8	
5	401	25	28	33		37									17	7034	80		18	-	
6	404	40.4	$20 \quad 3$	438		38 ,s.									7	700	-7	-	388	- 0	
8	407	38	40	37		30									-8	74	87	$\left.-\frac{9}{0} \right\rvert\,$	25	-	2\%
10	10	45	23	30		48									8	780	34	-	89	∞	है
12	43	(58) 202	48.162	17.192		22.16	$+$								9	9201	17.14	\bigcirc	SO 145	-	

PABMMCTM CHECK8

PABEENGER CHECKS

2. (Figure 26) While the 7:45-8:00 period appears to be adequately sorved as indicated by averages of 53 or less, and loss than 50 per cent of the buses carrying individual overlonds, the 8:00-8:15 poriod is showing a tendency (on the last day chocked.) to exceed tho loading standard (53), with four of the five buses on that doy boing overloadcd. Some adjustnont is indicatod for this period.
3. $\frac{\text { (Figure 26) From } 8: 15 \text { A.M. on there } i s \text { no indication of }}{\text { overloading. }}$
4. (Firgure 27) In the late basic "school and shopper band" loaded (avorages of $31,34,29$ and 32), indicating tho possibillty of reducing the sorvice somewhet in this period.
5. (Figuro 27) In the 5:15-5:30 band or the P.M. peak period therc is evidenco of nvcrloading (average loads of 57, 68, 63 and 58, with a majority of the buses carrying individual overloads, sowo cos high as 71 - 76 passengers against a loading standard of 53). This requiros correction. The rominder of the P.M. peak period seems to be adequately cared for.

Ir proparing the new headway order an effort will be mado to correct tho above conditions as indicatod by tho passenger load surmaries, and to edjust for the reduced runing time wisich appears possible of attainment.

Reforence chould now be made to the Schednlod Headwey Order, Figure 25 (A \& B), the new Running Time Shovt, Figure 22, and the Passenger Load Sumimies, Figures 25, 27 and 28.

Early A.M. Periou

In building the Ifodway Oider the achorlule maker studies each of these exhibits and froceeds to make his entries on the shect. In the illustration at hand he shows the first bus loaving the outer terrinal (Dumaine and Aloxander) at $4: 44 \mathrm{~A} . \mathrm{M}_{\text {. }}$, as in the existing schedule. Since there is no problem in the Fiorly A.M. hours, ho follows the present outer terminal leaving timos (shom undor "Schedule Time" in Figure 25) until 7:16 A.M., whitine the "headway specification" on the form step by step as show in the first twelve lines of Figure 25 A.

A.M. Eeak Poriod

In the A.M. Fuak period on the exioting schedule there are 14 buses on a 38 minute round trip time. The resulting headwey calculation would be:

> Number
> Running time
> Allocatei Vchicles and Headways
> of Busce $\frac{\text { (In ininutes }}{34} \quad \frac{\text { Buses }}{8} \frac{\text { Headway }}{2 \frac{1}{2}} \frac{\text { Buses }}{6} \frac{\text { Headway }}{3}$

38 divided by 14 equals 2 . with 10 minutes over.
10 minutes equal 20 "halr-minutes".

Increasing the headway on all 14 buses by one-half minute uses up 24 of the 20 "half-minutes" and leaves 6 over.

Increasing the headway on 6 of the buses by another "halfminute" each uses up the remaining time. Therefore, 8 buses operate on a (2 plus $\frac{1}{2}$) $2 \frac{1}{2}$ minute headway, and 6 buses operate on a (2 plus $\frac{1}{2}$ plus $\frac{1}{2}$) 3 minute headway:

$8 \times 2 \frac{1}{2}$	$=$
$\frac{6}{14} \times 3^{3}$ TOTAL	$=\frac{18}{3}$ minutes
38 minutes	

In the 7:30-7:45 time band of the existing schedule the average load per bus was 61 passengers on the latest day checked. The average for the four days was 60 passengers per bus. The buses in this period are operating on a $2 \frac{1}{2}$ 3 minute headway - three buses on a $2 \frac{1}{2}$ and two buses on a 3 . There are:

$$
\begin{aligned}
& 3 \times 5 \quad \text { "half-minutes", or } 15 \text { "half minutes" } \\
& \text { plus } \frac{2}{5} \times 6 \text { "half-minutes", or } \frac{12}{27} \text { "half minutes", } \\
& \text { a total of } \frac{\text { "hinutes" }}{}
\end{aligned}
$$

per bus, or 27 dirided by $5=5.4$ "half minutes" per bus.
Number of passengers handled per half minute equals 60 divided by 5.4 , or 11.

If the average load is to be reduced to a loading standard of 53 , the number of "one-half minutes" required in the new headway equals 53 divided by 11, or 4.82 - Say 5.

This means that the new headway during the 7:30-7:45 time band must be
$5 \times \frac{1}{2}=2 \frac{1}{2}$ minutes
instead of $2 \frac{1}{2}-3$ as at present. In other words, an additional vehicle should be schoduled past the inbound maximum load point during this period, as determined by the time at the outer terminal of the line.

With an additional (15th) rohicle in the A.M. Peak period of the proposed new schedule, there are 15 buses on a 38 minute round trip time. The resulting headway calculation would be:

Number
of Buses
15
:---
:---

38 divided by 15 equals 2 with 8 minutes over.
8 minutes equal 16 "half-minutes".
Increasing the headway on all 15 buses by one-half minute uses up 15 of the 16 "half-minutes" and leaves 1 ever.

Increasing the headway on 1 of the buses by another "half-minute" uses up this remaining half-minute. Therefore, 14 buges operate on a (2 plus $\frac{1}{2}$) $2 \frac{1}{2}$ minute headway, and I bus operates
on a (2 plus $\frac{1}{2}$ plus $\frac{1}{2}$) 3 minute headway:

$$
\begin{aligned}
& 14 \times 2 \frac{1}{2}=35 \text { minutes } \\
& \frac{1}{15} \times 3=\frac{3}{2} \text { minutes } \\
& 38 \text { minutes }
\end{aligned}
$$

The schodule makor must now continue with the preparation of the Hoadway Order, using 15 busos in tho morning peak and placing them so that the 7:307:45 A.M. period operatos on a $2 \frac{1}{2}$ minute hoadway.

Resuming at 7:16 A.M., a 3-minute headway interval is added, bringing tho time to 7:19 A.M. at the outor torminal, as noted on line 12 of the Headway Order. Thon $122 \frac{1}{2}$-minute hoadway intervals are proscribed botweon 7:19 and 7:49 A.M., which amply covers the "trouble" period of 7:30-7:45. This is followod by a 3 -minuto interval to $7: 52$, two $2 \frac{1}{2}$-minute intorvals to 7:57, and so on until 8:13 A.M. is reachod. The $12.2 \frac{1}{2}$-minute intorvals, the ono 3 -minute intorval, and the two $2 \frac{1}{2}$-minute intorvals betwoon 7:19 and $7: 57$ aro tho " $14 \times 2 \frac{1}{2}$ and 1×3 combination" which fits the 15 vehicles into a 38 -minute round trip time. The use of $42 \frac{1}{2}$ - minute intervals and 2 3-minute intervals following 7:57 A.M. places 6 buses instoad of 5 in the 8:00 - 8:15 time band, thereby holping to lower the average load in this period and to bettor distribute the load for the 30-minute period 7:45 8:15 A.M.

At 8:16 and following the cxisting schedule is adhored to until 9:43 A.M. Intervals of 3, $3 \frac{1}{2}, 4,4 \frac{1}{2}$ and 5 -minutes are proscribed, as indicated on lines 20-24 of the Headway Order (Figure 25A) and in the second portion (sheet \ddagger) of Figure 26, reading from 8:16 down to the $9: 43$ entry at the bottom of the sheet.

Basic Perioda

From 9:43 A.M. until 2:31 P.M. the inbound loads are controlling on the line under study. After 2:31 P.M. the inner terminal times are used in completing the Headway Ordor.

The old basic running time was 38 minutes. The proposed new running time for that period is 37 minutes. Therefore, on the existing gchoduie (see Figure 26) the basic headways are:

4 buses @ 6 6	$=$	26 minutes
$2-$ buses © 6	$=$	$\frac{12}{38}$ minutes
6		

On the proposed new schedule the 6-61 minute headway prescribed on the Headway Order between 9:34 A.M. and 2:31 P.M. (line 25 , Figure 25A) consists of :

2 buses © $6 \frac{1}{2}$	$=$	13 minutes
4 buses @ 6	$=$	24 minutes
6	37 minutes	

This letter combination would be used in building the new terminal sheet.
Reference to lines 25 and 26 of Figure 25A and the 2:32-3:24 P.M. schedule times in the left-hand group of figures on Figure 2.7 shows that the schedule maker prescribed the same number and sequence of $5 \frac{1}{2}$ and 5 minute headway intervals for the new schedule as on the old one. The entries differ
only by a "clock time" of one minute, ending at 3:23 on the Headway Order and 3:24 on the load summary sheet. Following 3:23 P.M. there is a proposed change in the new schedule in the interest of better load factor and schedule economy.

In the 39 -minute period from 3:19 to $3: 58$ P. M. on the existing schedule (see Figure 27) there are eleven (ll) vehicles on headways as follows:

$1 @ 5$ minutes	$=5$ minutes
$2 @ 4$ minutes	$=8$ minutes
$4 @ 3 \frac{1}{2}$ minutes	$=14$ minutes
$\frac{4}{11}$ @ minutes	$=\frac{12}{39}$ minutes

The 3:30-4:00 P.M. time band shows an average load of 31 passengers per vehicle for the four days checked, and 32 per vehicle on the last day checked. The average headway interval during this period on the old schedule is 30 minutes divided by 9 vehicles, or 3.33 minutes. This is the equivalent of 3.33 $x 2$ or 6.66 (say 7) one-half minute intervals. The average passenger load per "half-minute" is, therefore,

32 divided by 7 , or 4.58 .
To achieve a load in this period nearer the seated load of 40 passengers, the headway interval should be

$$
40 \text { divided by } 4.58 \text {, or } 8.75 \text {, say } 9 \text {, }
$$

"half-minute" intervals. This is equivalent to a $9 \times \frac{1}{2}$ or $4 \frac{1}{2}$ minute average headway instead of the present 3-31 minute headway for the half-hour period. Actually the schedule maker compronised on a $3 \frac{1}{2}-4$ minute headway during this period. (See lines 29 and 30, Figure 25A). This reduced the number of trips in the half-hour from 9 to 8 , thereby saving a round trip and increasing the average load per bus to:

$$
\frac{32 \times 9}{8}=36 \text { passengers per bus. }
$$

In the 40 -minute period from 3:18 to $3: 58$ P.M. on the proposed schedule (see Figure 25A) there are ten (10) vehicles on headways as follows:

1 @ 5 minutes	$=5$ minutes
$2 @ 4 \frac{1}{2}$ minutes	$=9$ minutes
$3 @ 4$ minutes	$=12$ minutes
$\frac{4}{10} @ 3 \frac{1}{2}$ minutes	$=14$ minutes
TOTAL	

This reflects the saving of one bus trip.
From 3:58 P.M. until 5:08 P.M. there are no special situations requiring correction (see Figure 27), and the schedule maker has simply specified these same headway intervals on the new Headway Order (lines 3l-38, Figure 25A; lines 39-43, Figure 25B).

P.M. Peak Period

In the P.M. Peak period of the existing schedule there are 17 buses on a 39 minute round trip time. The resulting headway calculation would be:
Number
$\frac{o f \text { Buses }}{17}$
Running Time
Allocated Vehicles and Headways
$\frac{\text { (In Minutes) }}{39}$
$\frac{\text { Buses }}{10} \frac{\text { Headway }}{2 \frac{5}{2}} \frac{\text { Buses }}{7} \frac{\text { Headway }}{2}$

39 divided by 17 equals 2 with 5 minutes over.
5 minutes equal 10 "half-minutes".
Increasing the headway on 10 of the buses by one-half minute uses up these 10 "half-minutes". Therefore, 10 buses operate on a (2 plus $\frac{1}{2}$) $2 \frac{1}{2}$ minute headway and 7 buses operate on a 2 minute headway:

$$
\begin{aligned}
10 \times 2 \frac{1}{2} & =25 \text { minutes } \\
\frac{7}{17} \times 2 & =\frac{14}{39} \text { minutes } \\
\text { TOTAL } & =1 t^{2}
\end{aligned}
$$

In the 5:15-5:30 P.M. time band of the existing schedule the average load per bus was 58 pascengers on the latest dey chocks. The average for the four days was 62 passengers per bus. The buses in this period are operating on a $2 \frac{1}{2}$ minute headway. There are:
6×5 "half-minutes", or 30 "half-minutes"; this is, of course, 5 "half-minutes" per bus.

Number of passengers handled per half minute equals 62 divided by 5, or 12 .

If the average load is to be reduced to a loading standard of 53, the number of "one-half minutes" required in the new headway equals

$$
53 \text { divided by } 12 \text {, or } 4.41 \text { - Say } 4 \text {. }
$$

This means that the new headway during the 5:15-5:30 time band must be

$$
4-\frac{1}{2} \quad=\quad 2 \text { minutes }
$$

instead of $2 \frac{1}{2}$ as at present. In other words, an additional vehicle should be scheduled past the outbound maximum load point during this period, as detormined by the time at the inner terminal of the line.

With an additional (18th) vehicle in the P.M. Pcak period of the proposed now schedule, there are 18 buses on a 38 minute round trip time. The result: ing headway calculation would be:

$$
\begin{aligned}
& \text { Number Running Time Allocated Vehicles and Headway } \\
& \frac{\text { of Buses }}{18} \frac{\text { (In Minutes) }}{38} \quad \frac{\text { Buses }}{14} \frac{\text { Headway }}{2} \frac{\text { Buses }}{4} \frac{\text { Headway }}{2 \frac{1}{2}}
\end{aligned}
$$

38 divided by 16 equals 2 with 2 minutes over.
2 minutes equal 4 "half-minutes".
Increasing the headway on 4 buses by onethalf minutes uses
up the 4 extra half minutes. Therefore, 14 buses operate on a 2 minute headway, and 4 buses operate on a (2 plus $\frac{1}{2}$) $2 \frac{1}{2}$ minute headway:

14×2	$=$
$\frac{4}{18} \times 2 \frac{1}{2}$ motal	$=\frac{10}{38}$ minutes

The schedule maker must now continue with the preparation of the Headway Order, using 18 buses in the evening peak and placing them so that the 5:15-5:30 P.M. period operates on a ? minute headway.

Resuming at 5:08 P.M., a series of 2 minute headway intervals is added until 5:30 P.M., followed by alternate series of 2 - and $2 \frac{1}{2}$-minute headways until 6:18 F.M. (lines 44 and $45-57$, Figure 25b). This amply covers the "trouble" period of 5:15-5:30. The four $2 \frac{1}{2}$-minute intervals and the 142 -minute intervals between 5:01 and 5:39 P.M. are the " 14×2 and $4 \times 2 \frac{1}{2}$ combination" which fits the 18 vehicles into a 38 -minute round trip time.

Early Night Period

In the "Early Night" period (6:30-8:29 P.M.) the old running time is 38 minutes, and the new running time is 37 minutes. The existing schedule calls for seven buses during this period, and thero appears to be no reason for a change. Therefore, on the existing schedule (see Figure 28) the basic hoedways are:

6 buses @ $5 \frac{1}{2}$	$=$	33 minutes
$\frac{1}{7}$ bus © 5	$=$	$\frac{5}{3}$ minutes
TOTAL		38 minutes

On the proposed nev schedule the arrangement would be:
37 divided by $7=5$ and 2 minutes over, resulting in

3 buses @ 5	$=$	15 minutes
$\frac{4}{7}$ buses @ $5 \frac{1}{2}$	$=$	$\frac{22}{37}$ minutes
TOTAL		

This latter combination would be used in builaing the new terminal sheet (see line 62, Figure 25B): The period between 6:18 and 6:47 P.M. is gradually brought down to a $5-5 \frac{1}{2}$ minute headway in successive steps of $3,3 \frac{1}{2}, 4$ and 5 -minute headways, as governed by the existing schedule (see Figure 27 and Figure 25B, lines 58-61). Note on Figure 27 that the intervals on the old schedule between 6:19 and 6:48 are the same as those called for on the Headway Order, except that the actual clock time is displaced by one (l) minute.

Late Night and "Owl" Periods

This procedure is continued for the late night period and the "owl" period, as indicated on Figure 25B, lines 63-73. Note that an analysis of operator's trip sheets, rather than actual passenger load observations, is used to provide "load data" for the late night and "owl" periods.

It is helpful to the schedule maker in preparing the Headway Order to note the proposed new terminal times in pencil alongside of the existing schedule in the blank epaces provided for that purpose on the load summary cheets (see Figuro 26, 27, 28).

The Headway Order herein shown (Figure 25 A and B) has been developed in full in order to present the complete story to the student of this report. In actual practice, the schedule makers on the sample property would fill in "same as existing schedule" to the trouble spot and then list the new headways, instead of listing out the full details on the Headway Order for those portions of the new schedule which are to be identical with the existing schedule.

The sample company does not operate "long-and short-line", or "Iurn-back" service on this line. For information concerning the special requiroments in schedule procedure for "turn-back" service, as well as a discussion of the proper design of the headway intervals preceding "longand short-line" vehicles, see Parts II \& III of this projuct. Alternative methods and procedures for determining and specifying headway intervals may also be found in these portions of the report.
G. Effect of "limiting Headways"

Some mention has been made under Section C (Loading Standards) of this chapter of "limiting hoadway loading standards" for use where schedules based upon the actual amount of passenger business available might produce headway intervals of as long as 15 or 20 minutes.

A study of passenger loads during the Early A.M., the basic, and the night periods of the day (Figure 26, 27, and 28) for the line under study will illustrate the use of "limiting" or "policy" headways.

For exemple, Early A.M.:

$\underline{\text { Period }}$	Headway		Average Load per Bus (5-8)	Seating Capacity
$5: 30-6: 00$	$12-10$	22	40	
$5: 00-6: 15$	$8-7$	26	40	
$6: 15-6: 30$	$7-6$	36	40	
$6: 30-6: 45$	$6-5$	28	40	

Basic

Puriod	Headray	Averagu Load per Bus $(5-14)$	Seatinc Capacity
$11: 30-12: 00$	$6-6 \frac{1}{2}$	32)	40
$12: 00-12: 30$	$6-6 \frac{1}{2}$	$29)$ Inbound	40
$12: 30-1: 00$	$6-6 \frac{1}{2}$	$31)$	40
	$(5-8) *$		
$1: 30-2: 00$	$6-6 \frac{1}{2}$	$32)$	
$2: 00-2: 30$	$6-6 \frac{1}{2}$	$39)$ Outbound	40

Night

Period	Headway		Average Load per Bus (5-14)*
$6: 15-6: 30$	$3-3 \frac{1}{2}$		Seating Capacity
$6: 30-7: 00$	5	33	40
$8: 00-8: 30$	$5-5 \frac{1}{2}$	21	40
$8: 30-9: 00$	$6 \frac{1}{2}$	26	40
$9: 00-9: 30$	$7-7 \frac{1}{2}$	27	40
$9: 30-10: 00$	7	28	40
			40
(*Date of Check)			

If the above periods were schedulod on the basis of loads and loading standards alone, striving for an average load per bus equal to the seating capacity of 40 passengers, vehicle miles and vohicle howrs would be saved for the company - but numbers of vehicles would be reduced and headway (waiting) intervals increased for the riding public.

Considerable difference of opinion exists throughout the industry as to the relationship which exists between "scrvice" (as measured by headway) and "riding" (as measured by revenue passengers). In but few instances has scientific study been used to determine what the headway interval is beyond which prospective patrons will refuse to wait for a transit vehicle and seek other means of transportation. It is hoped that industry-sponsored research in this field will yield worth-while information on this subject. In the meantime, companies resort to "limiting" or "policy" headways at off-peak periods of the day to hold or attract riders, depending upon the trend of riding. In the cases cited above for the sample company, vehicles arc loaded to $\frac{1}{2}$ or $3 / 4$ of their seating capacities during off-peak hours in order to hold headways at an attractivc lovel. This company seldom operates a headway of greater than 10 minutes on any line, except for the very late night and "owl" periods. The maximum interval prescribed as a policy headway at various etages of the economic cycle depends largely upon the financial ability of the company to rendcr the service.

Chapter V - "TERMINAL SHEET" will be devoted to a description of the use of the Headway Order (Figuro 25) and the Running Time Sheet (Figure 22) in proparing a Terminal Sheot, or schedule "tine table".

This chapter will be devoted to a discussion of the "terminal sheet", or schedulo "time-table". The terminal sheet consists essentially of the loving times of all vehicles from the outor and inner terminals of the route, arraned in ordorly fashion.
A. Importance, Value and Uscs of the Terminal Sheet

The terminal sheet is the basic time-table which governs the oporation of the service on the strects. This shoet, together with the running time between time points, schedules vehicles to leave the line terminals in ample time to pass the maximur load points in each direction just when they are noedod to handle tho passenfer load - not sooner, not later.

The terminal sheet defincs and times the amount of work to be performed by each "train", providing a definite basis for dividing the work to be performed by the vehicles into segments of work - called "runs" - to be performed by the operators on a given transit route.

The terminal shect inforns the oporator of the velicle when to depart from each torminal on the succossive trips which constitute his run. In combination with tho running time sheet, it tolls him when ho is schoduled to arrive at each time point along the inbouna and outiound routes of the line. It is his guide to the day's work, insofar as his schodulod duty to the public is concerned.

Tho terminal shect serves as the primary guide to the transportation department's stroot supervisor in his task of seeing that service is operated in accordance with the scheaule. In combination with the running time sheet, it tells him when each vehicle is schoduled to arrivo at each timo point. This enables him to ascertain whether operations are taking place too far ahead of or behind schedile, and furnishes a basis for corrective disciplinary action or recommendations to the schedulo dopartment for an investigation of noeded schedule changes. Tho terminal shoet also provides the supervisor with a basis for switching vehiclos short of their terminals, or "spacing" their departures from line torminals, in the event of dislocation in service or omergencies.

Finally, the terminal shoet, in combination with the running time sheet, provides a besis for furnishing schedulo information to the riding public. This is especially important in the case of routes having very long headways, and for the convenionce of strangers or residents who may be relatively uninformed concerning the transit system. Such information may bo distributed through several modia, as will be pointed out in Chapter VII.
B. Sources of Information

The sources of information required for the construction of the terminal sheet are:

1. The running time sheet, described in Chapter III.
2. The Headway Order, described in Chapter IV.

Section D of this chapter will be devoted to a full exposition of the method usod in building up the terminal sheet from these basic data.

FIGURE 29.

C. Form of the Terminal Sheet

A completed Terminal sheet in its final typed form is shown in Figure 29. It provides the following information:

```
1. Name of line.
2. Kind of schedule (weekday, Saturday, Sunday).
3. Schedule number.
4. Effective date.
5. Number of superseded schedule.
6. Name of car house or bus station.
7. Names of outer and inner line terminals.
8. Numbers of "Trains", or pieces of work based on equipment
    to be utilized.
9. Times that vehicles leave the station.
10. Departing times of successive vehicles from outer terminal.
ll. Departing times of successive vehicles from inner terminal.
12. Times that vehicles roturn to the station.
13. Total time that each vehicle is "on the road".
14. Total time that all vehicles are "on the road".
```

An intermediate working form, called the "terminal layout sheet", is used by the schedule maker in his rough work of computation. This sheet is typed in rearranged form to yield the final Terminal sheet.
D. Procedure for Setting up the Terminal Layout Sheet

The following outline sets forth the procedure for heading up tho Terminal Layout sheet and the details of the mathematical method of setting up a "time table" for the control of vehicle movements on the line under study. Referonce should be made to Figures 30 through 36 for illustrations of these successive steps.

Figure 30:
Step \#1. Place the name of the line (City Park Bus Line) on the first heavy horizontal line in the center of the sheet.

Step \#2. Flace the name of the kind of schedule (Tuesday through Friday) three lines below the line name in the center of the sheet.

Step \#3. Place the heading "Train No." in the first column to the extreme left of the sheet, between the heavy vertical ruled lines, and about three lines below that which shows the kind of schedule.

Stop \#4. The heading "Time Out" is placed in the next column (also between vertical rulings).

Step \#5. Three new columns are drawn in with vertical rulings at a distance of approximately 35 vertical spaces from the "Time Ont" column. The new column to the left is two spaces wide, and is headed "Pine In"; the middle column is two spaces wide and is headed "Total Time"; and the third column is one space wide and is headed "Train No."

FIGURE 30.
STEPS \# 1-7, PREPARATION OF TERMINAL LAYOUT SHEETSAMPLE COMPANY UNDER STUDY.

Step 46. The terminal headings aro next writton in, and are placed a little above the other headings just described. The outer terminal (Dumaine and Alexander) is written in on the loft-hand side of the sheet, and the inner terminal (Dauphine and Canal) is placed on the right-hand side.

Stop \#7. Tomporary train numbers are next written in the two "Train No." columns starting above the second heavy horizontal line and writing on every second horizontal line thereafter. About 40 numbers will be written for this particular linc.

Figure 31:

Step \#8. The hoadway ordor, Figure 25, shows the time at which the first bus should leave the outor terminal. This time ($4: 44$ A.M.) is entcred opposite Train No. 1 in the second vortical colum to the right of the "Time Out" column.

Step \#9. Calculate, with the aid of tho Running Time Sheet (Figure 22), the time when Train No. 1 will leave the inner terminal, and enter this time on the "Dauphine and Canal" half of the shoct in the second column to the right of the "Train No." column. This calculation is mide as follows:

Column A (Farly A.M.) of the Running Tine Sheet (Figure 22) shows running timo of 16 minutes to the inner tominal of the line. This 16 minutes added to $4: 44$ gives $4: 60$ or $5: 00$ A.M. as the time leaving Dauphinc and Canal Strects, since the linc takcs its "layover" at. the outer terminus of the line.

Step \#10. Celculate then Train No. I will be ready to leave the outer torminal of the line again on ite second trip, and midte this time very lightly to tho right of the Dumaine and Alexander portion of tho sheut opposite Train No. 1. This calculation is made as follows:

Column A (Early A.M.) of the Running Time Sheot shows a running timo of 15 minutes to the outer terminal and a hosadway adjustment timo of 4 minutos, a total of 19 minutes before the bus is rcady to bcgin its socond inbound trif. This 19 minutes added to the inner turminal leaving timo of 5:00 gives 5:19 A.M. as the time to be temporarily writton in.

Step "Il. Consult the Huadway Order and "pull out" the next bus requircd to give the indicated headway. A twenty minute hoadway is specificd following Train No. 1. 20 minutes plus 4:44 gives $4: 64$ or $5: 04$ A.M. This outor terminal leaving time is written opposite Train No. 35 (arbitrarily, but Gauged by experionco) in ordor to leave sufficient space in between this entry and Train No. I for the other "pull out" buses.

FIGURE 31.

Stop \#12. Calculato the timo when Train No. 35 will leave the inner terminal, and ontor this time on the "Dauphino and Canal" half of the sheet in the sucond column to the right of the "Train No." colum oppositc Train No. 35. This calculation is identical with that doscribod in Step 非, and results in a figure of $0: 16$ plus 5:04, or 5:20 A.M.

Stop \#13. Calculato when Train No. 35 will bo ready to leave the outer terminal of the linc on its second trip, and write this time In vory lightly to the right of the "Dumaine and Alexander" portion of the shect opposite Train No. 35. This calculation is identical with that described in Step \#lo, and rosults in a figure of $0: 19$ plus $5: 20$, or $5: 39$, to be placed temporarily on the sheet.

Stop \#14. The Headway Oracr calls for a 15-minute headway from 5:04 to $5: 34$. This muans that a bus must leavo the outer terminal at 0:15 plus 5:04, or 5:19 A.M., and another one at 0:15 plus 5:19, or 5:34 A.M. Roference to the "margin time" (Step \#lo) for Train No. l shows it to bo ready to loave tho outer torminal at 5:19 A.M, so that Train No. I can handle the 5:19 A.M. trip. Reference to the "margin tiine" (Step \#l3) for Train No. 35 shows that it will not be roady to leave the outer terminal until 5:39 A.M., so that it will not be available for the 5:34 A.M. trip. It is necessary, therefore, to pull out a new bus to handlo the trip leaving the outer terminal at 5:34 A.M. The 5:19 time is written in next to the 4:44 time opposite Train No. I and orased from its temporary location. Tho 5:34 tinc is writton in this same column, but opposite Train No. 15 - approximately half-way between Trains Nos. 1 and 35.

Stop \#15. The Headway crder calls for a l2-minute headway following the trip which leaves the outer terminal at 5:34 (Train \#15). 5:34 plus 0:12 gives a calculated leaving time of 5:46 A.M. A study of the "margin tine" for Train No. 35 (Step \#13) shows that it wiil be ready to leave the outer terminal at 5:39, so that by giving it an additional "layover" of 7 minutes at the outer terminal it can be scheduled to leave at 5:46 A.M. The time 5:46 is entered oppositc Train No. 35 as the outer terminal time for its sccond inbound trip, and erased from its temporary location.

Figure 32:

Step \#16. Calculate the inner terminal time for Train No. I on its second trip - 16 minutes running time plus $5: 19$ equals 5:35 A.M. Enter this time on the right-hand half of the sheet opposito Train No. 1.

Step \#17. Calculate the outer terminal time for Train No. I on its third trip - 19 minutes running time and hoadway adjustment timo plus 5:35 equals 5:54 A.M. Entor this time temporarily opposite Train No. 1.

PIGURE 32.
STEPS \#16-25,PREPARATION OF TERMINALLAYOUT SHEETSAMPLE COMPANY UNDER STUDY.

Step \#18. Calculate the inner terminal time for Train No. 15 on its first trip - 16 minutes running time plus $5: 34$ equals 5:50 A.M. Enter this time on the right-hand half of the sheet opposite Train No. 15.

Step \#19. Calculate the outer terminal time for Train No. 15 on its second trip - 19 minutes running timo and headway adjustment time plus 5:50 A.M. equqls 5:69, or 6:09 A.M. Enter this time temporarily opposite Train No. 15.

Step \#20. Calculate the inner terminal time for Train No. 35 on its second trip - 16 minutes running time plus 5:46 equals 5:62 or 6:02 A.M. Enter this time on the right-hand half of the shoct opposite Train No. 35.

Ster \#21. Calculato the outer terminal time for Train No. 35 on its third trip - 19 minutes running time and hoadway adjustment time plus 6:02 equals 6:21 A.M. Inter this time temporarily opposite Irain No. 35.

Step \#22. The Headway Order calls for a 10 minute headway following the inbound trip at 5:46 A.M. That is, $0: 10$ plus 5:46 equals 5:56 A.M. The "margin time" for Train No. 1 ($5: 54 \mathrm{~A} . \mathrm{M}_{\mathrm{o}}$) shows it to be available for this trip. The actual terminal time of 5:56 is entered opposite Train No. 1, and the calculated tine of $5: 54$ is erased from its temporary location.

Step \#23. The Headway Order calls for an 8 ninute headway following the $5: 56$ trip, or a leaving time of $0: 08$ plus $5: 56$ equalling $5: 64$, or 6:04 A.M. - from the outer terminal. The "margin time" of Train No. 15 ($6: 09$) shows that it is not yet available to make this trip, so that a now bus must be pull.ed out in time to leave the outer terminal at 6:04. This time is entered on the "Dumaine and Alexander" half of the sheet under the 5:56 A.M. time and opposite (temporary) Train No. 5.

Step \#24. The Headway Oraer calls for a 7 minute headway until 6:18, or one bus leavine the outer terminal at 6:04 plus 0:07, or 5:11, and another leaving at 6:11, plus 0:07, or 6:18. The "margin time" of Train No. 15 (see Stops \#18 and \#19) shows it to bo avajlable at $6: 09$, so with 2 minutes additional layovor it can handle the 6:11 trip. This time is entercd on the terminal sheet opposite Train No. 15, and the 6:09 time is erased. Since Train No. 35 is not available until 6:21 (see Steps \#20 and 21), it is necessary to pull out another bus (temporary Train No. 29) to handle the 6:18 A.M. trip.

Step \#25. Reference to the Headway Order shows a headway of 6 minutes required between $6: 18$ and $6: 30$ A.M., or buses leaving the outer terminal at 6:24 and 6:30. Train No. 35 ("margin time" of 6:21) is available to handle the 6:24 trip. The 6:24 time is entered on the sheet opposite Train No. 35, and the 6:21 time is erased from its temporary position. The 6:30 A.M. trip will be discussed in connection with Figure 33.

FIGURE 33.
STEPS \#26-32, PREPARATION OF TERMINAL LAYOUT SHEET SAMPLE COMPANY UNDER STUDY.

Step \#26. The inner terminal times for Trains Nos. 1, 5, 15, 29 and 35 are ail calculated and ontcred in the appropriate columns and rows under "Dauphine and Cancl". It is necessary to change running time columns after the 5:56 A.M. inbound trip, ac indicated by the slanted line (/) drawn under 5:56 opposite Train No. I on the "Dumaine and Alexander" side of the shect. Thus, for Troin No. 15 leaving the outer terminal at 6:1.1 A.M., inbound running tine coluran " B " is used (see Figure 22). 6:11 plus 0:18, the new running time, equals $5: 29$, the time entered on the "inner terminal" half of the shest opposite Train No. 15.

Step \#27. The "margin tines" for thesc same train numbers are all calculated and entered on the shoot temporarily. It is necossary to change running time columns after the 6:29 A.M. outbound trip, as indicated by tho slanted line (/) drawn under 6:29 opposite Train No. 15 on the "Dauphine and Crnal" side of tho shect. Thus, for Train No. 29 leaving the inner terminal at 6:36 A.M., outbound running time column "B" is used (see Figuro 22). 6:36 plus 0:20, the new running time and headway adjustment time, equals 6:56, the "margin time" entered opposite Train No. 29 on Figure 33. The "margin times" for these runs are as follows:

Stop \#28. In Step \#25 it wes indicated that the Heedway Ordor requircd a trip leaving the outer terminal at 6:30 A.M. Reforence to the "marein time" for Train No. 1 ($6: 31$ A.M.) shows it to be just a rinute too late to handle the 6:30 trip without cutting the hoadway adjustment time too short. Therefore, awother bus is pullod out of the station to handle the 6:30 trip. The now 6:30 time is entered opposite (temporary) Train No. 39. The inner terminal timo $(6: 48)$ and tho "margin timo" (7:08) aro thon calculated.

Step \#29. The Headway Order calls for a headwey of five minutes between 6:30 and 6:45 , or departures from the outer terminal at $6: 35,6: 40$ and $6: 45 \mathrm{~A} . \mathrm{M}_{\text {. }}$ Reference to the "margin times" on Figure 33 shows that Train No. $1(6: 31)$ can hendle the 6:35 trip, Train No. 5 cen handle the 6:40 trip, while a new bus (temporary Train No. 1l) must be pullod out to handic the $6: 45$ trip. These time entries are mado on the torminal sheet, and the corresponding "margin times", where applicable, are erased.

Step \#30. The Headway Order calls for a $4 \frac{1}{2}$ minute headway from 6:45 to 6:54, or inbound trips at 6:49- $\frac{1}{2}$ and 6:54. Train No. 15 (margin time of 6:48) is availablo for the 6:49 $\frac{1}{2}$ trip, while an additional pull out bus (Train No. 26) is required to meet the 6:54 departure.

Step \#31. The 4 minute headway specified for the 6:58 A.M. inbound trip can be mot by Train No. 29, which has a "margin time" of 6:56.

Step \#32. Reference to tho Headway Order shows a 3 minute inbound headway between 6:58 and 7:19, or departures from the outer terminal at 7:01, 7:04, 7:07, 7:10, and etc. Trains Nos. 35 and 39 are arailable for the 7:04 and 7:10 trips. (Temporary) Trains Nos. 31 and 37 are pulled out to mect the 7:01 and 7:07 demand.

Figure 34:

Step \#33. At this point the inner terminal times for Trains Nos. 1, 5 , $11,15,26,29,31,35,37$, and 39 are all computed and entered on the sheet. The corresponding "margin times" for the succceding inbound trips aro also calcuiated. Care must be taken to use the appropriate column on the Running Time Shect.

Step \#34. Deferenco to the Hoadway Order (sce also Step \#32) shows a 3 minute inbound headway between 7:10 and 7:19, or departures from the outer terminal at 7:13, 7:16 and 7:19. Trains Nos. 1 and 5 arc availeble for the $7: 13$ and 7:19 trips, whilc an additional bus (Train No. 3) is pulled out to take caro of the $7: 16$ departure.

Step fth5. The Headway Order cails for a $2 \frac{1}{2}$ minute headway from 7:19 to 7:49. Fight of the dopartures from the outer terminal can be handled by buses already on the line, while four additional pull outs must be made (Train Nos. 9, 13, 27, and 33). All 15 of the A.M. Peak buses are now pulled out and operating on the line.

Step \#36. From time to time, as the work progresses, a check should be made by the schodule maker in order to detormine the accuracy of his work. This check is illustrated in Figuro 35, and is made as follows:
(A) For a givon colum of outer terminal times (take the 7:13 A.M. column, for example) calculate the corresponding inner terminal timos by adding the inbound running time to the outer terminal times. Enter these in the appropriate colum on the terminal layout sheet. For example:

$\begin{aligned} & \text { Train } \\ & \text { No. } \\ & \hline \end{aligned}$	Outer Torminal Time	Inbouna Frunning Time	```Calculated Inner Torminal Time```
1	7:13	18(B)	7:31
3	7:16	18	7:34
5	7:19	18	7:37
9	7:21- $\frac{1}{2}$	18	7:3912
11	7:24	18	7:42
13	7:26年	18	7:44 ${ }^{\frac{1}{2}}$
15	7:29	18	7:47
26	7:312 ${ }^{\frac{1}{2}}$	18	7:49 $\frac{1}{2}$
27	7:34	18	7:52
29	7:36 ${ }^{\frac{1}{2}}$	18	7:54 ${ }^{1}$
31	7:39	18	7:57
33	7:41- $\frac{1}{2}$	18	7:5912
35	7:44	18	8:02
37		18	8:04 ${ }^{\frac{1}{2}}$
39	7:49	18	8:07

(B) In a similer manner, determine the inner terminal leciving times for the succeeding buses by successively adding headway time; for example:

$\begin{aligned} & \text { Train } \\ & \mathrm{No} . \\ & \hline \end{aligned}$	$\begin{gathered} \text { Inner } \\ \text { Terminal } \\ \text { Time } \\ \hline \end{gathered}$	Specified. Headway	```Calculated Inner Torninal Time```
1 (Start)	7:31	-	-
3	-	3	7:34
5	-	3	7:37
9	-	$2 \frac{1}{2}$	7:39 ${ }^{\frac{1}{2}}$
11	-	$2 \frac{1}{2}$	7:42
13	-	2-1	7:44 $\frac{1}{2}$
15	-	$2 \frac{1}{2}$	7:47
26	-	$2 \cdot \frac{1}{2}$	7:49 ${ }^{\frac{1}{2}}$
27	-	$2 \frac{1}{2}$	7:52
29	-	2 $\frac{1}{2}$	7:54 ${ }^{\text {a }}$

FIGURE 35.
STEPS \# $36, A, B \& C$, PREPARATION OF TERMINAL LAYOUT SHEET SAMPLE COMPANY UNDER STUDY.
(B) (Continued)

(c) If all calculations have been properly made, the inner terminal tine for the last car (Train No. 39 at 8:07 A.M.) will be the same by the two different mothods of computation.
(Not Shown):
Step 排7. The "margin time" for all buses at the outer terminal is again calculated, using the proper column of running tine, and enterea temporarily to the right of the appropriate train numbers.

Step \#38. The Headway Order is consulted again, and its instructions carefully followed. The time entered in the "margin" will indicate how the buses on the line may be utilized for mainteining the required headway.

Step \#39. The three-part operation described recurrently above is continued and repeated across the terninal layout sheet, namely:
(a) Establishing the headway at the indicated terminal from the Headway Order (NOTE after 2:31 P.M. on the Headway Order Sheet, the inner terminal - "Dauphine and Canal" is controlling).
(b) Computing the leaving time at the other terminal by the "running time" method of calculation, and chocking it by the "headway method" of calculation.
(c) Determining the "margin time" at the first terminal by these two methods of computation.

Throughout the process the Running Time Sheet should be consulted frequently for changes in running time at both terminals. Changes in running time are indicated on the terminal layout sheot by underlining the terminal time of the vehicle which uses the "old" or "previous" running time.

Step \#H0. For the method of removing servico from the line after the A.M. Peak, consider the sixth outer terminal time colum from the left-hand side of the sheet ('7:52 A.M. column):

Train No.	$\begin{gathered} \text { Outer } \\ \text { Terminal } \\ \text { Time } \\ \hline \end{gathered}$	Inbound Rumnine Time \qquad	\qquad	Outbound Fiunning Time Plus "Layover"	\qquad
1	7:52	18(B)	8:10	20(B)	8:30
3	7:54 ${ }^{\frac{1}{2}}$	18	$8: 1.2 \frac{1}{2}$	20	8:32 ${ }^{\frac{1}{2}}$
5	7:57	18	8:15	20	8:35
9	8:00	18	8:18	20	8:38
11	8:023	18	8:20 ${ }^{\frac{1}{2}}$	20	8:40 ${ }^{\frac{1}{2}}$
13	8:05	13	8:23	20	8:43
15	8:08	18	8:26	20	8:46
25	8:10 ${ }^{\frac{1}{2}}$	18	8:28- $\frac{1}{2}$	20	8:48 $\frac{1}{2}$
27	8:13	18	8:31	20	8:51
29	8:16	13	8:34	20	8:54
31	8:19	18	8:37	20	8:57
35	8:22	18	3:40	20	9:00
37	$8: 25$	18	8:43	20	9:03
39	8:28	18	8:46	20	9:06

Reference to the Heodway Order shows that a $3 \frac{1}{2}$ minute headwey is required betweon $8: 28$ and 8:42, and a 4 minute headway between 8:42 and 9:06. The calculated "margin times" set forth imndiately above provide for $2 \frac{1}{2}$ and 3 minute headways. The following disposition fs made of the above Train Numbers in meoting the headway specification:

$\begin{aligned} & \text { I'rain } \\ & \text { No. } \end{aligned}$	Calculatod "Margin Time"	Disposition
1	8:30	Makes inbound trip at 8:372 ${ }^{\text {A }}$. M.
3	8:32 ${ }^{1}(a)$	Not norded.*
5	3:35	Makes inbound trip at 8:35 A.M.
9	8:38	Makes inbound trip at 8:38 $\frac{1}{2}$ A.M.
11	8:40 ${ }^{\frac{1}{2}}$	Meikes inbound trip at 8:42 A.M.
13	8:43(a)	Not needed.*
15	8:146	Mokes inbound trip at 8:46 A.M.
26	8:483	Makes inbound trip at 8:50 A.M.
27	8:51(a)	Not necded.*
29	8:54	Makos inbound trip at 8:54 A.M.
31	8:57	Makes inbound trip at 8:58 A.M.
35	9:00	Makes inbound trip at 9:02 A.M.
37	9:03(a)	Not noeded.*
39	9:06	Makos inbound trip at 9:06 A.M.

*Decision as to whether thesc vehicles are to bo sent to the garage or tied in with othor trains is roservcd until the process of "shifting" trains has been comploted. This will bo discussed in dctail in a subsequent section.
(a) The time enterod on the terminal layout sheet for these vohicles in the 8:3l $\frac{1}{2}$ time column is the arriving time at the terminal, as such vehiclos would not take a layover if sent to tho bus garage.

(Not Show)

Stop \#41. This proccss is ropeatod until the number of schodulcd buses is rodueed to six (6) between 10:00 A.M. and 2:31 P.M. at the inner torminal.

Step \#42. The number of buses is gradually built up again during the afternoon in accordance with the Hoadway Order, and in linc with the procedure described in Steps \#8 - 39 above.

Step \#43. fiftor the P.M. Peak period the servico volume is progressively duflated in accordanco with the Headway Order, and in linc with the procedure illustratod in Step \#40 above, until only the "owl" bus remains on a 60 minutc headway between 1:17 A.M. and 4:17 A.M. as measurod at the innor terminal.

E. Procedure for "Shifting" Trains Frior to Run Cutting

The partially completed torminal layout sheet is shown in Figure 37.

At this stage in the schedule making procodure followed by the sample company, it is customary to revjow tho torminal layout shoet with a view to "shifting" and ro-combining trains in such a manner as to cloar up all the obvious obstacles to a satisfactory run cut. Experience indicates that a terminal layout sheet usually has to be ro-arranged after the run cutting process begins in order to secure tho best result. As much as possible of this "shiftine" of trains is, however, performed beforo boginning the run cut.

While the esscntial details of this company's labor agreement with its platiom employcos will bu set forth completely in the next cheptor, a few major points will bo enumorated below:

1. All regular runs shall be as near eight hours as practicablc.
2. No regular run shall exceed eight hours and forty-five minutes except that 5% of the total system man runs may exceod eight hours and forty-five minutes by fifteen minutes.

3. Regular runs that exceed eight hours and forty-five minutes will pay time and one-half after oight hours and forty-five minutes have bcen cxcceded.
4. All regular runs working less than eight hours will pay eiglit hours.
5. Any run working over eight hours and not more than eight hours and forty-five minutes shell pay straight time.
6. Thoro shall be as many straight runs as economically possible.

The scheculo maker, having in mind the general contract provisions outlined above, roviows the rough torminal layout shect to see that the following conditions are possiblo of attainment:

1. That the number of early straight runs and late straight runs in the new schodule will bo equal to or greater than the number in tho cxisting schoaule, all other conditions boing equal.
2. That the base cars will come out on tho lino as carly as possible so that as many trips as foasiblo can bo mado by rogular cars.
3. That the straight runs will fall somewhere between eight hours and cight hours and forty-five minutes.

Tho first condition, is, of courso, associatod with tho provision of the labor contract that "thore shall be as many straight runs as economically possible." The older mon on the property, who usually pick the early straight runs, like to get off work as carly as possiblc - around noon or shortly thereafter. Thoy like tive straight runs, and like thom to begin as early as possible. This alco tien in with condition No, 2 as sot forth above. From the company's standpoint, it is dosirable that the early trips bo associated with straight runs sn thet the nuaber of runs involving high additional. "spread" pay may be kopt at a minimun. It is, of course, desirable that as many runs ass possiblo fall within the $8: 00$ and $3: 45$ straight time rate, as this is the nimimum rate tliat can bu paid for productive platform time.

With these thoughts in mind, the ichodule maker refors to the run cut shout of the existing schedulc (not shown herein) and finds that thero are four (4) carly straight runs and soven (7) lato straight runs. Sinco his work will be the subject of reviow in the Superintondent of Schedulcs on the ono hand and tho Trainmon's Association's Schedule Committee on the othor, and, furthor, since the new schodulc calls for as many base and night vehicles as the oxisting schodulo, he will sirive to sot up at loast 4 carly straight runs and at least 7 late straight runs.

Figure 38 is a durlicate of Figure 37 which will be uscd in an attempt to trace tho process of "shifting" trains. Actually no such shoet exists, as tho shifting is dono by a series of crasures and re-arrangements which result in the final poncil daraft of tho torminal sheet. Figure 38 will bo uscd, howovor, in an attompt to follow the mental processes of the schodule makcr as he shifte the trains.

FIGURE 38.
"SHIFTING" THE TERMINAL LAYOUT SHEETSAMPLE COMPANY UNDER STUDY.

Firct, he attempts to make his four early straight runs from the first four buses which pull out of the bus garage, if that is possible.
 straight run. Train No. 35 ($5: 04$ A.M.) is too short to make on early straight run, and indicates the possibilitios of "shifting" trains in order to keep this early bus out. Train No. 15 ($5: 34 \mathrm{~A} . \mathrm{M}_{0}$) and Train No. 5 (6:04 A.M.), the fourth pull out bus, are obviously susceptible of becoming straight runs. Afifth vohiclo, Train No. 29 ($6: 18$ A.M.) likowise appears susceptible of becoming an early straight run.

Therefore, the schodule makor concludes that, out of the first five pull out buses, there are four possible early straight runs and one early straight run which might probably rosult from a "shift" of trains.

Continuing with his examination of the terminal lnyout sheet, the schedule maker considers Train No. 39 ($6: 30$ A.M.), which appoars to him to have possibilities of being profitably shifted to combine with Train No. 35 (5:04 A.M.) in an early straight run. Train No. ll (6:45 A.M.) is a short piece, which off-hand the schedule maker feels might stand alone for the prosent. Train No. 25 ($6: 54$ A.M.) is the last base bus to reach the line, and it provides the possibilitics of a straight run. The process described above is continued until the six (6) base buses havo been examined.

After all base buses have been oxamined for possible carly straicllt runs, a chock is made to sec that the base buses come out as early as possible. This is done in order to put as many trips as possible on regular buses and to cut the length of tripper runs. This saves the company money by raicing the average number of trips on rogular runs.

Beginning with Train No. I - no chenge necded, as this is the earliest A.M. bus and is associatod with basc operations. Nothing much can be done about Train No. 3. Train No. 5 is already a possible early straight run, and is a base bus. Trains Nos. 9, 11 and 13 are short trains which cannot be added to base trips as they show up in Figure 38. Train No. 15 is a base bus. Trains Nos. 25 and 23 both stay on the line during the base period, and thore are no apkeront varlier trips which could be added to then. Train No. 27 is short, with base buses before and behind it. Trains Nos. 31 and 33 are similar to Trains Nos. 9, 11 and 13, and there would be no apporent shifting ot this time unloss subsequent steps in run cutting should justify it. Train No. 37 is short and is preceded and followed by longer trains. Trains Nos. 35 cnd 39, as proviously discussed, aro susceptible of being combincd to advantage. This complatos the process of oxanining the morning portion of the terminal shect.

The schedule maker is now ready to shift his morning trains. Referonce should be inde to Figure 38 in following stops A, B and C :

Stop A. The time 9:36, representing the arrival tinc of Train No. 35 at the outor terminal on its last trip, is erasod fron the tominal layout shect.

Step B. The outer terminal times of Train No. 39 from 9:43 A.M. through 8:17 P.M. are "shifted" upward into position behind the 9:02 $1 . \mathrm{M}_{\mathrm{M}}$ time of Train No. 35.

Step C. A new terminal time is computed for Trair No. 39-9:06 plus 17 minutes running time to Dauphine and Canal gives $9: 23$, which, plus 16 minutes running time back to the outer terminal, equals 9:39 A.M., which is the time that Train No. 39 would return to the bus garage. This time ($9: 39$ A.M.) would be written in behind the $9: 06$ time for Train No. 39, and followed by a check mark ($/$) indicating that this bus would now go to the bus garage.

As a result of this shift, Train No. 35, with two trips earlier than Train No. 39, has become a base bus. The total time (5:04 A.M. to 8:17 P.M.) exclusive of 'in and out time is $15: 13$, which approaches two 8 -hour regular runs more nearly than Train No. 39's former 13:47. A desirable early straight run has been made possible. This same result could be obtained by dropping the first two trips of Train No. 35 dow to Train No. 39. The shift actually used in this case is preferred by the sample company because it involves less total layover time than the alternative method of dropping Train No. 35 down to Train No. 39.

The schedule maker has set up five (5) early straight runs in the now schedule as compared with foum (4) in the existing schedule - a gain of one "preferable" run. These early straight runs are associated with Trains Nos. l, 35 (after "shifting"), 15, 29 and 5.

Attention is next directed towards the afternoon portion of the terminal sheet and the attainment of an objective of at least seven (7) late straight runs.

Train No. I runs through until 1:05 A.M., and will provide a late straight run. Train No. 3 is the "owl", and will provide a late straight run. Train No. 16, while presently a little short, is susceptible of being "shifted" into a late straight run. Train No. 17 is a little long for a late straight run, and might be corrected by a suitable shift. Train No. 20 is short, but is so placed cu the sheet as to indicate a possible late straight run if properly combined in a shift of trains. Train No. 23 is too long for a late straight run, but might be useful in a shift of trains. The latter portion of Train No. 25 possesses interesting possibilitics. Train No. 39, which has already been shifted to Train No. 35 in the A.M. study, will definitely make a late straight run.

Reviewing the above discussion, the schedule maker has two definite late straight runs, -- Trains Nos. 3 and 39 (35 after A.M. shift), and two strong possibilities -- Trains Nos. 1. and 25, either "as is" or on a basis of what can be made out of them. All other late straight runs must be obtained as the result of the "sinifting" process. Two other trains -- Nos. 17 and 23, are a little too lonb, and trippers might have to be made out of parts of them in order to produce late straight runs. This would give six out of the seven needed late straight runs. So far, therefore, there is a possibility of coming up with 6 late straight runs, just l short of the number in the existing schedule, a result which would not be received well by either tre Trainmen's Committee or the Superintendent of schedules.

Returning his attention to Train No. l, the schedule maker considers the possibility of combining Trains Nos. 1 and 2 in some manner. If these trains were combined in a shift which would link the $4: 44$ A.M. time (Train No. 1) with the 6:33 P.M. time (Train No. 2) thore would result the exrly straight run already

FIGURE 39.
PARTIALLY COMPLETED TERMINAL SHEET-
referred to plus a 6-hour (approximate) piece which might be coupled with a 2-hour (approximate) A.M. tripper to make another regular run. The 4:391 ${ }^{\frac{1}{2}}$ P.M. to 1:05 A.M. portion of Train No. I would yield a late straight run which would fall within the 8 hour and 45 minute limitation. This shift is made in the following steps:

Step D. Remove the terminal times of Train No. I from 4:392 P.M. to 12:01 A.M. inclusive from their present position to the bottom of the sheet to connect up with the 12:37 and 1:05 time entries. Line the $4: 39 \frac{1}{2}$ up beneath the $4: 37 \frac{1}{2}$ P.M. time of Train No. 41.

Step E. Move the 4:42 to 6:33 P.iN. times of Train No. 2 up to combine them with the remaining portion of Train No. l.

The schedule maker next turned his attention to Train No. 2l, which is too short to give a late straight run, and Train $\mathbb{N o} .23$, which is too long as it stands. By combining that portion of Train No. 23 from 6:20 P.M. to ll:49 F.M. with Train No. 2l, a late straight run falling within the 8 hour and 45 minute limitation would result. This shift is made in the following steps:

Step F. The tine 6:12, representing the arrival time of Train No. 21 at the outer terminal on its last trip, is erased from the terminal layout sheet.

Step G. The outer terminal times of Train ITo. 23 from 6:20 through 11:49 P.M. are shifted upward into position behind the 5:38 P.M. time of Train No. 21.

Step H. A new terminal time is computed for Train No. 23 -5:40 $\frac{1}{2}$ plus 17 minutes running time to Dauphine and Canal gives 5:57 $\frac{1}{2}$, which, plus 17 minutes running time back to the outer terminal, equals $6: 14 \frac{1}{2}$ P.M., which is the time that Train No. 23 would return to the bus garage. This time is entered as 6:15 (allowing the extra halfminute) behind the 5:40 $\frac{1}{2}$ time for Train No, 23, and followed by a check mark $(\mathbb{\checkmark})$ indicating that this bus would now go to the bus garage.

Consideration was next given to Train No. 16, which is a little too short, and Train No. 15, which does not presently afford a late straight run. The following steps were taken:

Step I. That portion of Train No. 15 from 4:48 $\frac{1}{2}$ to 6:01 P.M. inclusive was shifted up to a new position opposite temporary Train No. 7.

Step J. That portion of Train No. 15 from 2:56 to 4:11 P.M. inclusive was shifted down to combine with Train No. 16.

This shift resulted in the production of a late straight run Train No. 16 - falling within the 8 hour and 45 minute limitation.

FIGURE 40.

Attention was next directed to the remaining portion of Train NT. 15 - a portion approximately nine hours in length with no pull in and standing on the sheet alone. The schedule maker visualized a possible shifting and recombination of parts of Trains Nos. 15, 17, 19 and 20 which would produce a more desirable result. If the 5:34 A.M. time of Train No. 15 could be combined with the 8:14 P.M. of Train No. 20, an early straight run and a late stroight run could be devoloped, with a small amount of allowed time to make them 8 hour runs. If the 3:01 and 3:372 P.M. trips of Train No. 17 could be shifted elsewhere, the remaining portion of this train would moke a late straight run within the 8 hour and 45 minute limitation. These moves were actually accomplished through the foilowing steps:

Step K. The 4:17 P.M. outer terminal time of Train No. 19 was dropped to Train No. 20.

Step L. The 3:01 and 3:372 P.M. times of Train No. 17 were dropped to Train No. 20.

Step M. The 5:34 A.M. to 2:19- $\frac{1}{2}$ P.M. times of Train No. 15 were aropped to Train No. 20.

A final shirt, designated as Step N on Figure 38, was made to combine the 6:54 A.M. time of Train No. 25 with the $6: 58$ P.M. time of Train No. 26. This was accomplished by "dropping" thic torminal times of Train No. 25 from 6:54 P.M. to 3:10 $\frac{1}{2}$ P.M. inclusive down to connect with the 3:50 P.M. time of Train No. 26. This resulted in the production of a longer train (by one trip) than that formerly represented by Train No. 25, raising the total time (exclusive of pull in and pull out time) from 11 hours and 23 minutes to 12 hours and 4 minutes. This would nake the late straight run formerly noted on Train IVo. 25 a little later, and leavo an early portion of $4 \frac{1}{2}$ hours (approximate) which might be profitably combined with some $3 \frac{1}{2}$ hour (approximate) P.M. piece.

This completed the shifting of trains during the P.M. period. The schedule maker actually set the stage for eight late straight runs, or one more than those in the existing schedule. These are associated with Trains Nos. 3, 26 (25 after shifting), 39 (35 after A.M. shift), I (as shifted to the bottom). 23 (as combined with 21), 16, 17 and 20 (rosulting from multiple shirt).

It was now necessary for the schedulo maker to shift the right-hand portion of the terminal layout shoct to conform to the changes made on the loft-hand portion. These changes, designated as $B^{\prime}, D^{\prime}-E^{\prime}, G^{\prime}, I^{\prime}-J^{\prime}, K^{\prime}-I^{\prime}-$ M', and IN' may be easily followed on Figure 38. The letters corrospond with the similar lotters on the Dumaine and Aloxander side of the sheet.

The resulting terminal shect after the above shifts have been made is shom in Figure 39. The temporary Train Numbors have beon roplaced with permanent Train Fivivors from 1 to 20, beginning consecutively at the top of the sheet. All future reforence to train numbers will involve these new numbers of Figure 39.
F. Completion of the Terminal Sheet:

Figure 40:
Step 折4. The completod pencil Torminal sheet is show in

Figure 40. Attention is given to the amounts of "pull out" and "pull in time which should be allowed during the different running time periods of the dav. These can be determined from the previous schedule, and modified where necessary in the light of experience or observation. The earliest "Out Time" for a given Train Number should be enteroid in the appropriate column to the left of the outer terminal" times, and the latest "In Time" for a given Train Number should be entered in the column to the right of the outer terminal times. Examples:

Train No. 8 - "Out Time" in Early A.M. is 8 minutes. Bus must leave garage at 5:26 A. in. to be ready to leave outer terrninal for first inbound trip at 5:34 A.M.

Train No. 8 - "In Time" in Early Night is also 8 minutes. Bus leaving outer terminal of line at 8:44 P.M. reaches garage and end of day's work at 8:52 P.M.

Train No. 14 -"Out Time" in A.M. Peak "build-up" is 8 minutes. "In Time" after A.M. Peak is also 8 minutes. Note check mark ($ل$) after $8: 47 \mathrm{~A} . \mathrm{M}_{\mathrm{o}}$, indicating that bus leaves outer terminal for garage at 8:47 A.M., reaching there at 8:55 A.M., the figure behind the check mark.

Train No. 14 - "Out Time" in P.M. Peak "build-up" in $8 \frac{2}{2}$ minutes. (Additional $\frac{1}{2}$ minute allowed to permit time out of garage to be on even minute.) This time allowance ($4: 22$) is indicated by the word "OUP" followed by 4:22, a space, and then by $4: 30 \frac{2}{2}$, the first P.M. jnbound trip time. At the end of i.ts work the bus leaves the outer terminal at 6:21 P.M. for the garage, arriving there 8 minutes later at 6:29 P.M., which time is entered in the "In Time column.

Step \#45. The total elapsod time that each Train is in service should be computed and entered in the "Total Time" colum. This colum should then be added in order to obtain the total number of vohicle hours requirod by the entire day's schedule.

Examples: Train No. 8 leaves the bus garage at 5:26 A.M. and returns at 8:52 P.M., an elapsed time of

12:00 Noon

- 5.26 A.M.

6:34 hours in A.M.
$+8: 52$ hours in P.M.
14:86 or 15:26, total time.
Train No. 14 leaves the bus garage at 7:26 A.M. and returns at 8:55 A.M., an elapsed time of $1: 29$ hours. This same train leaves the bus garage again at 4:22 P.M. and returns at 6:29 P.M., an elapsed time of $2: 07$ hours. The total of these two segments of Train No. 14 is $1: 29$ plus 2:07, or 3:36 hours.

The total vehicle hours for the day is 164:54.

G. Final Form of Terminal Sheet

A finished Terminal Sheet is typed from the pencil "terminal sheet". The completed Terminal Sheet is shown in Figure 29. In this form the inner teminal times are show in a group below the corresponding outer terminal times. The Schedule Number (7730), its Effective Date, the Schedule Number supersedod (7649), and the nome of the bus station are shown in the upper left-hend corner of the sheet, in addition to tho other features contained on the "terminal layout" form. The notation for running time change is omitted from the typed Terminal Sheet, and the check mave designating "pull in" vehicles on the pencil sheot are replaced by asterisks (*).

Other forms and methods for setting up terminal sheets or time tables, including the "graphical" method, will be discussed in Parts II and III of this report, which will provjde a compendium of industry practices and viowpoints on this phase of the schedule makins process.

No reference will be made in Pert I to the preparation of terminal sheets for "long-and-short-line" routes, or so-callod "turn-back" service. The sample company does not generally employ turn-back service in its operations. The reader is referred to Parts II and III, where industry practices and viewpoints on this important phase of schedule makng will be discussed.

Consideration will next be giver to the process of cutting the terminal chect into "runs" for assombly into pieces of work for the operating personnel.
A. Irportanco of Run Cutting

As indicatod at the close of the preceding chapter, the process of "run cutting" is essentially a procedure for cutting a transit schedule terminal sheet into "runs" for assembly into pieces of work for the operating personnel. It is by far the most complicated of the procedures which have been examined in this report, and an attempt has been made to illustrate and describe the procedure used "by the sample company in such a way that the student of the report may follow this method in every detail.

The run cutting process is of such basic importance that great carc, skill and patience aro roquired of the technicians who carry it out. Its importance steras from two sources:

1. The published rosults of the run cut form the basis on which the operating personnel selects its work, in accordance with somiority. The runs established by the schedule maker must conform to the company's agreement with its trainmen. They prescribe the working hours of each vehicle operator, and determine the exact amount of wages which each operator receives for regular and extra work.
2. Tho run cut dotermines the emount of "pay hours" which the company must pay for in order to accomplish the "actual" or productive work hours required to perform a given transit service. The run cut determines the number of "non-productive" platform labor dollars, as well as the number of hours worked at straicht time and overtime, together with the various allowances and penalty payments associated with the labor contract.

Summarizing, it may be said that the run cut involves an impor.. tant "employee relations" aspect on the one hand, and an important "economic" aspect on the other. The ability of a company to successfully combine these two basically important elements in a constiructive way will largely determine the success or failure of its transit operations.

It has already been pointed out that the schedule maker must start from a properly constructed and properly "shifted" terminal sheet in order to achieve the best results from the run cut.

B. Controlling Factors

The cutting of runs involves the balancing of the various cost elements of the labor contract against each other in an effort to produce
the most economical combination within the limitations of the specified working conditions. For this reason, an understanding of the provisions, requirements and allowances of the labor agreement is required at the outset.

The important elements of the agreement of the sample company with its platform employees are listed below:

1. Schedules shall be so arranged as to allow regular trainmen and bus operators six days per week and approximately eight hours per day.
2. All regular runs shall be as near eight hours as practicable.
3. No rogular run shall exceed eight hours and fortyfive minutes except that 5% of the total system man runs may exceed eight hours and forty-five minutes by fiftoon minutes.
4. Regular runs that exceed eight hours and fortyfive minutes will pay time and one-half after eight hours and forty-five minutes have been exceeded.
5. All regular runs working less than eight hours will pay eight hours.
6. No regular run shall be divided into more than two parts, except that 10% of the total system man runs may be divided into three parts.
7. There shall be as many straight runs as economically possible.
8. Intervals in split runs shall be as short as economically possible. (This does not apply to spread runs as provided for elsewhore.)
9. All "Owl" runs shall be considered as straight runs.
10. Any run, tripper or speciel working less than five hours and twenty-minutes shall pay time and one-half.
11. Any run, tripper or special working over five hours and twenty minutes and not more than eight hours shall pay eight hours.
12. Any run, tripper or special working over eight hours and not more than eight hours and forty-five minutes shall pay straight time.
13. No tripper or special shall pay less than one hour at the rate of time and one-half (except as provided elsewhere in the contract).
14. For two-part runs having a spread of eleven hours and not more than fourteen hours the following additional rates of pay shall apply:

Runs having a spread of eleven hours and under oleven hours and thirty minutes -- 15d per day.

Runs having a spread of eleven hours and thirty minutes and under twelve hours -- 30ϕ per day.

Runs having a spread of twelve hours and under twelve hours and thirty minutes -- 50\& per day.

Funs having a spread of twelve hours and thirty minutes and under thirteen hours -- 70 $\neq \mathrm{per}$ day.

Runs having a spread of thirteen hours and under thirteon hours and thirty minutes -- 95ф per day.

Runs having a spread of thirteen hours and thirty minutus and not over fourteen hours -- \$1.l0 per day.
15. Not more than seven per cent (7%) of the total number of system man runs shall have a spread of over thirtcen hours.
16. No run shall havo a spread of over fourteen hours.
17. When conductors or bus oporators are required to take charge of cars at a distance from the barn, or are required to leave their cars at a point other than the barn, they shall be paid at regular rates per hour for schoduled time allowed the conductor or bus operator in going to or coming from the barn.

There are many other provisions of this labor agreoment, but the ones cited above are the general provisions thet govern the run cut which will be explaincd in detail in this chapter.
C. Objectives of the Schedulo Maker in "Cutting Up" a Schedule

On the sample property a schedule maker strives for the following objectives in "cutting up" a schedule:

1. He tries to give as many early straight runs as possible - at least as many as the number in the existing schodulu.
2. Ho triee to give as many late straight runs as possible - at least as many as the number in the existing schedule.
3. He tries to keep the amount of "time allowod to 8 hours" at a minimum, as such hours are nonproductive.
4. He tries to keep the spread pay allowance at a minimum.
5. He trics to keep the amount of "tripper time" (time and ono-half, or "rod ink" time) at a minimum. It is proferable to work as much of the schodule as possible into regular runs.
6. He tries to make the schedule as convonient as possible for the trainmen by
a. Limiting reliofs to the hours between 9:00 A.M. and 10:00 P.M.
b. Holdine the time botween rolief's very short (15 or 20 minutos), or else making them long onoagh to pormit trainmen to go homo for a meal, and return (1-11 $\frac{1}{2}$ hours).
c. Attempting to "balance" the longths of the portions of a two-picce run so that neither portion is too short.
d. Keoping to a minimum the spread time of those runs having a spread of less than eleven hours.
relations" aspects of the schedulo matere job.

D. The Subdivision Sheet

The Subdivision Sheet is used as an aid in run cutting. It is an intermediate calculation sheet which gives the time each train passes the relief point or points as a preliminary to run cutting. Care must be used in setting it up, as the preparation of the Run Cut Sheet is based upon the Subdivision Sheet and later checked back upon the basic source material. It also serves as a "chock" sheet for the run cut process.

The sources of information for preparing the subdivision sheet aro the running time shoet (Figure 22) and the terminal sheet (Figure 29).

A sample subdivision sheet for the line under study is shown in Figure 41. The shect is headed with the name of the line ("City Park Bus Line"), the kind of schedule ("Tuesday to Friday"), the train numbers from the terminal sheet in the extreme left-hand colum, and the "time out" for each train number exactly as it appears on the terminal shect. Columns are also provided for "time in" and "total time". These two columns appear at the extreme right-hand side of the tabulation.

The revised train numbers of the teminal sheet (Figure 29) are copied into the left-hand colum of the subdivision sheot, spacing them about every third horizontal linc from the top down. Beginning in the ninth column to the right of the "time out" column, the columns are alternately headed "in" for inbound bus trips and "out" for outbound bus trips. These headings are placed on the same horizontal line as the headings "train number", "time out", "time in", and "total timc". It is customary for the schedulc department to write theso headings alternately in black and red ink; that is, all "inbound" headings are writton in black ink; all "outbound" headings arc written in red ink. Bucause of tho block aod phito reproduction used in this volume, colors cannot be used.

As a rule, since reliefs on the sample property are not made before 9:00 a.m. or latcr than 10:00 p.m., rolief times are not calculated earlier. than 9:00 a.m., or later than 10:00 p.m. In the specific example under consideration, the sheet runs from 10:00 a.m. to $4: 00 \mathrm{p.m}$. , except for the "owl".

The advantage of the subdivision sheet as an intermediate data sheet lies in the fact that it will, whon completed, show every possible rolief time for the line in question so that the schedule maker charged with the responsibility of cutting the terninal sheet into runs may be able to sec irmediately when cach potential "run-eading" occurs by direct inspection rather than having to stop and compute the running time to the relief point in each instance. The subdivision sheet is, therefore, a chart of potential rellef times in each direction.

The rolief time entrics which are placed on the subdivision sheet preparod as described above are computed in the following manner: To the outer terminal leaving time is added the running timo from the outer terminal to the rellef point on the in-bound trip, and to the inner terminal leaving time is added the running time from the inner terminal to the relief point on the out-bound trip. The running time used must be that which applies to the running time period under consideration.

It is customary, in filling out the Subdivision Sheet, to place all "in-bound" relicf times on the shect before the "out-bound" relicf times are calculated, and then to place the outbound times in tho alternato spaces between the "in-bound" relicf times.

The following examples will serve to illustrate the manner in which the subdivision sheet is filled out.

Taking trafn No. 3 as an illustration, the following steps are involved in the computation of relief times:

Step \#1: Reference to the terminal sheet (Figure 29) shows an outer terminal leaving time for this train number at 9:55 A.M. To this time is added 7 minutes running time (see running time sheet, Figure 22) which is the runaing time from the outer terminal of the line at Dumaine and Alexander to the in-bound relief point at Orlcans and Broad. 9:55 plus 7 equals 10:02. This inbound relief time of 10:02 is entercd on the subdivision shect in the first "in" colunn opposite train No. 3.

Sten 杖: The next in-bound trip of train No. 3 leaves the outer torminal of the line at $20: 32$ A.M. To this time is added the 7 minutes running time from Dumane and Alexander to Orleans and Broad. This gives a total of 10:39 A.M. This time is entered in the second "in" column opposite train No. 3.

Sten \#3: The noxt outer terminal leaving time for train No. 3 is. 11:09 A.M. To this is added the 7 minute running time from Dunaino and Alexander to Orlcans and Broad, the inubgund relief point. 11:09 plus 7 gives 11:16 A.M. This time is entered in the third "in" column.

Step 壮: The succooding outer terminal loaving times aro treated in the mannor describod in Steps 2 and 3 above so that the relief times for succeoding trips are calculated and entored in tho appropriate "in" columns. Those timos (sue ontrios for train No. 3, Figure 41) cre: 11:53, $12: 30,1: 07,1: 44,2: 21,2: 58$, and 3:37 $\frac{1}{2}$. As a rosult of his oxperience in cutting schedules on the property undor study, the schedule maker discontinuod the computation of relici times on the subaivision shect from this point forward, as he knows that no further cuts will be made boyond that time.

Step \#5: Referring again to train No. 3 of the torminal shoet for the line under study, we find that the first outbound lcaving time, from tho innor torminal of the line at Daupline and Canal Streets, is 10:12 A.M. To this is added the 10 minute running time from Dauphinc and Canal Streets to the out-bound relief point at Dunainc and Broad Strects. 10:12 plus 10 equals $10: 22$ A.M., which time is entered in the first out-bound or "out" relief time column opposite train No. 3.

Step \#6: The next inner terminal time ic 10:49. A.M. To this is added the 10 minute running tine fron the inner terminal at Dauphine and Canal Streets to the outer torminal at Dumsine and Broad Streets. This givos a reliof time of $10: 59 \mathrm{~A} . \mathrm{M}_{\mathrm{c}}$, which is entered in the second "out" colum opposito train No. 3.

Stop \#7: The next inner terminal time is 11:26 A.M. To this is added the 10 minute running tine from the inner terminal of the line to the out-bound relief point, giving a total of $11: 36$ A.M., which is entered in the third "out" column opposite train No. 3.

Step \#8: The same sequence of calculations is continued for other out-bound relief times, giving the following entries which are made on the subdivision shect: $12: 13,12: 50,1: 27,2: 04,2: 41$, and 3:18.

These same steps are continued for the other "longwrun" buses, such as trains No. $1,8,13,15,18$ and 2.

No relicf times are shown for first or last trips, since the vehicle is either coming right out of the bus garage or going directly to it in charge of an operator who is oither just going to work, or just getting off. Therefore, no relicfs are mado on first or last trips.

Relief times are not computed for those trains which make only a. few round trips each. Thesc trains are usually in charge of one operator only from the time the vehicle pulls out of the garage until it pulls in again at the corpletion of its prescribed run. The out time, in time and total time are entered for thesc trips however. Take, for cxample, Train No. 5. This shows out of the bus garage at 7:13 A.M., in the bus garage at 9:21 A.M. Following across the sheet opposite Train No. 5, it shows out of the bus garage again at $2: 48$ P.M. and into the bus garage at ll:05 P.M. Another example would be Train No. 11, which shows out of the bus garage at 4:55 P.M. and into the bus garage at $5: 45$ F.M., a total of 50 minutes. There is no problem of reliefs on runs as ehort as these. Their "in", "out" and "total" times must, however, be shown on the Subdivigica Sheet.

Not all properties make use of a computed subdivision sheet as an ald to the preperation of the run cut. On some properties this intermediate calculation is considered a waste of time, and the individual relief times are calculated only at such times as the schedule-maker from experience feels that a run will be cut. It is the opinion of the sample company that it saves tine and provides in the long run a better run cut to take the little additional time at the start which is required for the preparation of the subdivision sheet. For conments, opinions and Eulternative methods of handling this phase of the schedule-making process, the attention of the reader is directed to Parts II and III of this study.

The manner in which the subdivision sheet is utilized in preparing the run-cut sheet will be described in detail under gection "E", which follows irmediately.

SCHEDULE NO
sup SCh no
gtation.
TRAINNUMBER) EABLERUNB

SCMEDULE DEPARTMENT

(4)
——LINE
c.ty, Oank Ban
relief moints $\left\{\begin{array}{l}\text { in } \\ \text { out }\end{array}\right.$

\qquad

The Run Cut Sheet used by the company in its schedule work is shown in Figure 42.

The shect provides for the following information in the heading:
Schedule number
Date effective
Superscded schedulc number
Station (name)
Name of line
Type of schcdule (wcekday, Saturday, ctc.) Approval
Rolief points, inbound and outbound
The form is dividod vertically into a left-hand (Early Runs) and a right-hond (Late Runs)nortion. Each of thesc portions is further sub-divided into columns for the following data:

Run nurnbers
Time on, time worked and time off
Hours - actual, allowed and pay Spread-hours and pay (\$).

In the lower right-hand corner of the shect is a form for the Recapitulation of Runs, which provides for a summary of the rosults of the run cut. The data are divided horizontally into Types of Runs (Early, Late and Total), and Kinds of Runs (Straight, Two-piece and Trippers). They aro divided vertically as follows:
Nuuber of runs
Actual hours
Allowed time - to 8 hours, time and $\frac{1}{2}$, total
Pay hours
Total spread pay
Journey time

In order to simplify the process of explaining the preparation of the Run Cut Sheet - an involved process at best - certain dashed lines and circled letters have becn added to the form temporarily. Those markings do not appoar on tho form as uscd by the sample company. By means of these lines and letters, the various spaces on the form have been subdivided and identified; for examplo, the designation on the "Early Rung" side of the sheet of "2l-B-J" would refer to row 21 B and Colum J - the area or space cross-hatched.
hs previously explained, the Subdivision Sheet is the schedule maker's primary source of information in setting up the Run Cut Sheet. An avxiliary Subdivision Shect has been provided in Figure 43. This form will be "marked up" from time to time as the run cutting process unfolds. This sheet is storted "clcan" - no check marks (\checkmark) and no time markings. As the schedule makor procecde, he continually marks up the "piecos" of time of each train which he uses on Figure 43, and checks back ajainst the total time as, he progrosses and uses all pieces up.

When he begins the run cutting process the schedule maker does not know, aside from his preliminary inspoction and shifting of the terminal shoet,

FIGURE 43.
(AUXILIARY) SUBDIVISION SHEET -
SAMPLE COMPANY UNDER STUDY.

Just how many runs of various types and kinds he will have. It is customary to strive for an average length of regular runs of 8 hours or better when starting to cut. A little more than 8 hours is desired at the start, so that the schedule maker can balance against his number of trippers and come out with an average length of regular runs of about 8 hours.

The total train time (actual hours) shown on the completed terminal sheet (Figure 29) is 164:54. Assuming 19 regular runs, the average time per run would be $164: 54$ divided by 19, or $8: 42$, which is too high. Assuming 20 regular runs, the average time per run would be $164: 54$ divided by 20 , or $8: 15$, which the schedule maker considers not too high for a start. Twenty (20) regular runs averaging 8:15 hours each are, therefore, his temporary objective. This figure of 20 is marked in a circle at the top of his run cut sheet.

The schedule maker turns his attention to the left-hand or "Early Runs" half of the Run Cut Sheet, and begins to enter from the Subdivision Sheet the early buses as they leave the station. These entries for early schedule are made in the upper half of each run space - the half"-rows marked "A". This leaves room for the later runs and pieces to be entered in the lower half of each run space - the half-rows marked "B". Nothing is entered on the left-hand (early) side of the sheet which pulls into the station after 9:00 P.M.

Left-hand or "Early" Side of Sheet

Beginning this process - the first bus out of the garage is Train No. 1 at $4: 36$ A.M. This entry is made in space l-A-I. A check mark is placed behind the $4: 36$ time on the Subdivision Sheet to indicate that this entry has been made on the Run Cut Sheet.

The second bus out of the garage is Train No. 18 at 4:56 A.M. This entry is made in soace 2-A-I, and the $4: 56$ time is checked on the Subdivision Shect. Similar entries are made for other trains in time order as they pull out - No. 8 at 5:26 (Space 3-A-I), No. 3 at 5:56 (Space 4-A-I), and No. 15 at 6:10 (Space 5-A-I). In each instance a check mark is placed behind the "time out" on the Subdivision Sheet to show that the entry has boen made.

The next vehicle out of the earage is Train No. 20 at 6:22 A.M. This is the early portion of a two-part train. The train number (20) and "time out" ($6: 22$ A.M.) are entered on the Run Cut Sheet in space 6-A-I, and checked off on the Subdivision Sheet. The "time in" of this rorning portion of the train ($9: 47 \mathrm{~A} . \mathrm{M}_{\mathrm{o}}$) is entered in space $6-\mathrm{A}-\mathrm{K}$, and checked off on the Subdivision sheet. The elapsed time (time worked) for this piece is determined by subtraction ($9: 47$ minus $6: 22$ equals $3: 25$ hours) and entered on the Run Cut Sheet in space 6-A-J. The time worked is also entered behind the A.M. portion of Train No. 20 on the Subdivision Sheet for future reference and checking. The schedule maker knows that eventually ho must find a piece of $4 \frac{1}{2}$ hours (approximate) duration to add to the A.M. portion of Train No. 20 in order to rake a regular run of approximately eight hours duration.

The next entry is for Train No. 6, which leaves the bus garage at 6:37 A.M. and returns at 10:01 A.M., an elapsed time of 3:24 hours. These data are entered in spaces $7-A-I, 7-A-K$, and $7-A-J$, respectively, of the Run Cut Sheet. The times out and in are checked on the Subdivision Sheet, and the time worked is entered on this sheet behind the "time in".

It should be noted that the word "IN" follows the "time in" the garage on the Run Cut Sheet in the case of these morning parts of trains. This contrasts with later entries involving "reliefs", where tho vehicle
oporator chances, but the vehicle remains on the road.

The above processes are repeated until all the h.M. peak buses havo boen listed on the Run Cut Sheot. These entries are for Trains Nos. 13, 16, 19, 2, 5, 7, 14, and 17. They aro placed in spaces 8-A-I, 9-A-I, J \& K, 10-A-I, J \& K, and so forth through space 15-A-I, I \& K. Note that all excopt Train No. 13 are A.M. trains which return to the bus garage. In the case of Train No. 13 spaces $8-\mathrm{A}-\mathrm{J}$ and K arc open at this point until the "reiiof" calculntion is made. In each instance appropriate check marks aro placed on the Subdivision Sheet (Figure 43), and the clapsed times for portions of trains used are also entered on this sheet for future reforence and checking.

At this point the entries on the Riun Cut Sheet and the vehicles checked on the Subdivision Sheet aro counted. Both counte equal fifteen (15) - the number of scheduled A.M. Peak buses. This shows that the proper number of entries has beon made up to this point.

In the discussion of the Terminal Sheet it was indicated that the cxisting schedulo has. four (4) early straight runs, and that at least this number (or possibly: one more) should be striven for on the now schedule. As a rominder that ho should not oncroach upon tho prosent number of oarly straight runs (four), the schedule maker counts dow four spaces from the top of his.list of corly runs, and places a hoovy pencil mark across tho column line (designated by the letter (C). If one of the entries abore that line is encroached upon in the process of cutting runs, the early strai.ght run so destroyod must. bc replaced.

The schedule meker noxt turns his attention to the right-hand; or "late" side of the Run Cut Sheot, and lists all of the vehicles which pull into the gerage at 9:00 P.M. or lator, placing them on the sheet in time order. These cntries are placed in the "lower" or "B" half-rows of the individual run spaces to allow for the oarly portions of any lato two-picco runs wich may dovelop.
Right-hand or "Late" Side of Shect

Roforring to the Subdivision shoet (Figure 43), he finds that the first bus pulls into the garage at 11:05 P.M. This is Train No. 5, out of the stotion at 2:48 A.m. The clopsed time ("actual") for this bus is 8:17 hours. These ontrios are made in snaces $I B-R, I B-T$ and $I B-U$ on the "lato" side of the Run cut Sheet. All "times out" of station (Colum R) are preceded by the Train Numbur and the word "OUI". The "time in" is chocked on the Subdivision Shoct, the elapsed time. (8:17) is written in on the Subdivision Shect following the "out" time of $2: 48$ P.M., and this time (8:17) is added to the 2:08-how elapsed time or the oarly portion of this samo train to give a total time of $10: 25$ hours, which checks the "total time" of $10: 25$ on the Subdivision Sheet. Tho $10: 25$ entry in the "total time" column of the Subdivision Shect is checked off to indicato that the two portions of this train as entercd on the Run Cut Sheet add up correctly, and use up all the time as shown for Train No. 5 on the Subdivision Sheot.

Further reference is made to the Subdivision Sheet, and successive entries are made: on the "latc" side of the Run Cut Sheet for Trains. Nos. 9, 6, and 20. In each instance the "in" times are checired on the Subdivision Sheet, the "actual" times are entered on the Subdivision Sheet, and totaled to see that the "total time" of the train has been utilizod. The total time entries are then checked.

The next entry to be placod on the "late": side of the Run Cut Sheet is the "Owl" - Train No. 2 which goes in tho garage at $4: 40$ A. M. The 4:40 A.M. time is listed first in space 5-B-T. Knowing that he is secking for regular runs averaging 8 hours, the schedule maker "backs up" from the 4:40 A.M. time by approximately 8 hours to find a suitableselief time for this train. Referring to the Subdivision Sheet, Train No. 2, he temporarily selects the 8:21震 outbound relief time and enters it in space $5-B-R$ on the "late" side of the Run Cut Sheet. Note that the word "OUT" is not entered in this' space, indicating a "relief" as opposed to a bus just pulled cutof the station. The clapsed time between the reliof time of $8: 21 \frac{1}{2}$ P.M. and the "in" time of $4: 40 \mathrm{~A} . \mathrm{M}^{2}$. - 8:19" howns, is entered in space 5-B-U. A small vertical mark (') is placed over the $8: 21 \frac{1}{2}$ relief time on the Subdivision Sheet, and the time worked $\% 8: 19$ hours) is entered on this sheet behind the 8:39 relief time entry to indicate how much of the time of this Train has been transferred to the Run Cut Sheet. The 4:40 "in" time is checked off on the Subdivision Sheet.

The 8:212 $\frac{1}{2}$ relief time on the "owl" is now to be treated as though it was a "pull in" time in listing buses on the Run Sut Sheet. This applies, of course, to the listing of the exrlier portion of Train No. 2 .

At this point the schedule maker decided to check up on the number of runs which he had listed so fan. This count revealed 20 runs. He decided to continue listing for awhile, in excess of his objectire of 20 runs, and then to come back and remove some of the tripper runs to the "extre board" at a little later time.

Iisting Remaining Trains

He then roturned to the left-hand (carly) side of the Run Cut Shoet and bogan to list every vehicle pulling in before 9:00 P.M. which had not yet been listed. A study of the Subdivision sheet in search of these other trains revealed, including the carlier "unused". portion of the "owl", 15 more trains to Ilst. Inspection of the Run Cut Sheet reveals that he might possibly "tie $u^{\prime \prime} 10$ or 11 of these 15 trains with the early pieces listod on the left-hand side of the sheet in spaces 5 through 15. Fifteen (trains yet to be entered) minus eleven (raximum possible "tic-ups") leaves four - he counts down four spaces (to snace 19) below spacc 15 (the last entry) to begin the next step.

Turninf his attention to the Subdivision Sheet, he finds that the latest "in" timo before the 9:00 P.M. limit is the 3:52 P.M. time associated with Train No. 8. As this train has 2 total length of $15: 26$ hours, it may be poosible to eventually make an early straight run and a late etraight run from it. The entry for this train is made in space $19 \mathrm{~B}-\mathrm{K}$; that is, "8:52 IN". The "in" time only is checked of f on the Subdivision Shoet.

The neat train to be listed, moving "backwards" from 9:00 P.M., is the 8:25 P.M. "in" time of Train Ho. 18. This entry is made in space $18 \mathrm{~B}-\mathrm{K}$. This "in" time is checked on the Subdivision Sheet.

The next time to be entered is the $8: 21 \frac{1}{2}$ P.M. reliof time of the "owl" (Train No. 2), which the schedule maker must treat as though it were an "in" time (Sce the fifth paragraph preceding). This time is entorod in" space $17-\mathrm{B}-\mathrm{K}$. The word "IN" is omitted, however, as this is really a "relicf" tinc. The "out" time of 3:19 P.M. for this train is entered in space 17-B-I. The alapsed time of $8: 21 \frac{1}{2}$ minus 3:19, or 5:02 hours to the "whole" minute, is entered in spacc $17-B-J$, as woll as above this portion of Train No. 2 on the Subdivision Sheet. Adding togethor the three portions of this train which have been transferred to the Run Cut Sheet -- 1:29 plus 5:02 plus 8:19 hours, the check total of $24: 50$ hours 1s obtained. The "totcil time" entry on the Subdivision Sheet of $14: 50$ for Train No. 2 is then checked.

"re1ppers"

As indicated at the outset, the schodule makor was socking for 20 regular runs. He has listcd on the shoot 23 runs so far, or three more than needed. This would run his average way down $-164: 54$ total schoduled time divided by 23 runs would be just a little over 7 hours, against the average of 3 hours plus, which is his temporary objective. Ho, thoreforo, stops listing trains and begins to "pull off" some his A.M. trippers -- transferring them to the "oxtra board -- to reauce his number of runs. The objoctivo, over all, at this point is to remove about 8 hours of tripper time, beginning with the shortest trippers first. He finds that tho four shortest trippers are:

Train No. 17	$7: 33-8: 24$ A.M.	$0: 51$ hours
Train No. 2	$7: 08-8: 37 \mathrm{A.M}$.	$1: 29$ hours
Train No. 7	$7: 18-8: 47 \mathrm{A.M}$.	$1: 29$ hours
Train No. 14	$7: 26-8: 55$ A.M.	$1: 29$ hours
		TOTAL

If he removes these four A.M. tripper runs to the extra board, he will have 23 minus 4, or 19, regular runs romaining; and in this adjustment of his objective from an initial 20 to a now 19 runs, he should transfer the equivalont of a run -- 8 hours to the extra board. So far, with these four A.M. trippers, ho has moved only 5:18 hours over. He still has 3 hours (approxinately) in P.M. tripper timc to move to the extra board to compensate for this sevision in his objective. The circlod figure at the top of the Run Cut Shect is changed from 20 to 19 as being his new objective total number of regular runs.

At this point a "test" of his avorago length of run is made:

$$
\begin{aligned}
& \begin{array}{l}
\text { Total time schodulod } \\
\text { Minus A.M. Trippers to }
\end{array} \\
& \begin{array}{l}
164: 54 \\
\text { extra board. } \\
\text { Leaves a remaindor of }
\end{array} \\
& \underline{59: 18} \\
& \text { for } 19 \text { runs, or } \frac{159: 36}{19}=8: 11 \text { hours. }
\end{aligned}
$$

This average is now a littlo high, indicating the need to transfer more time from regular runs to tripper runs in the P.M. Peak.

Tho schedule maker next transfers the fow tripper runs described
above to the midale right-hand side of the sheet. In actual practice he erases these runs and enters them. in the new position. For purposes of illustration in this report, these tirippers will be simply crossed out and entered in their new locations, as indicated by arrows. In this transfer the elapsed times are entered as "actual" time in Column U.

A re-count of regular runs after this shift shows 14 on the early side and 5 on the late side, a total of 19 - the objective number of runs. There must, therefore, be no separate entries from this point forward. All other trains and portions of trains to be transferred from the Subdivision Sheet must be cormbined in some manner with the 19 runs already listed.

"Matching" Trains

Reference back to the Subdivision Sheet shows Train No. 2 "relief" time of $8: 21 \frac{1}{2}$ P.M. :- to be the last train listed. The next train in the garage is No. 13 at 7:06 P.M., which represents a total time of 12:20 hours. The schedule mairer tries to find sonething in the A.M. of about 4 hours duration which, when added to Train No. 13, would total roughly 16 hours, or two runs. No. 13 as listed in space 8 A is an "onen" run. For the moment the schedule maker assumes that he may be able to hook the final portion of Train No. 13 up vith Train No. 5 io advantage. He, therefore, enters the "in" time of To. 13 (7:06 P.M.) in space $12 \mathrm{E}-\mathrm{K}$ and lets it remain there temporarily. The 7:05 P.M. "in" time is "checked off" on the Subdivision Sheet.

The next "in" bus in decreasing time order is Train No. 3, in the garage at 6:46 P.M. The total time of this train is $12: 50$ hours. The schedule maker is now seekine a 3-hour (approximate) piece which, when added to the 12:50 time of Irain ive. 3, vill give two 8-hour runs. Such a possibility is Train No. 16 in the morning, with a total time of $3: 26$ hours -?2:50 plus $3: 26$ equals $15: 76$, or 16 hours and 16 minutes, the equivalent of two eight-hour runs. The "in" time of Train No. 3 ($6: 46$ P.M.) is entercd on the Run Cut Snect in space $9 \mathrm{~B}-\mathrm{K}$. The 6:46 P.M. "in" time is checked on the Subdivision Sheet.

Consideration is rext given to Train No. 1 , which goes into the carage at 6:41 P.M., and has a total time of 14:05 hours. If this could be comoined with Train No. 19 (A.M. portion of $2: 08$ hours length), the result would be 16:13 hours, or two possible 8-hour runs. The "in" time of Train INo. I (6:41 P.M.) ie entored in space 10-B-K. The 6:41 "in" time is checked on the Subdivision Sheet.

The next "in" time in decreasing order is Train No. 19 (P.M, portion) at 6:35 P.M. This has a lensth of $2: 45$ hours. Turning consideration to Train Ho. 13, space $12 \mathrm{~B}-\mathrm{K}$, it is found that there is a move in progress to tie Train Wo. 13 in with Train No. 5 ($12: 20$ plus 2:08 equals 14:28). If the $2: 45$ hour part of frain iio. I9 could be added to this total, an overall combination of $17: 13$ hours woula result -- a little more than two 8-hour runs. So, the schedule maker tries temporarily to combine the P.M. portion of Train No. 19 with a portion of Train No. 13. The three ontries for Train Mo. 19 (P.M. portion) aro entered. in spaces $8 \mathrm{~B}-\mathrm{I}, \mathrm{J}$ and K . The time used is entered on the Subdivision Sheet, added to the time used of the A.M. portion of Train Ho. I9, checked aeainst the total time of Train Mo. 19, and appropriate check marks are made.

The next bus pulls into the earage at 6:31 P.M. This is Train No. 15, with a total elapsed time of 12:21 hours. The schedule maker needs about $3 \frac{1}{2}$ hours to turn this into two 8 -hour runs. The A.M. portion of Train No. 6 (space 7A) is $3: 24$ hours long. This, plus 12:21 for Train No. 15, would eive $15: 45$ hours, or nearly two 8-hour runs. The "in" time for Train No. 15 is entered in space $7 \mathrm{~B}-\mathrm{K}$, and checked off the Subdivision Sheet.

Train No. 14 (P.M. portion) is the next "in", at 6:29 P.M. The schedule maker knows that he has to put more tripper time to the extra board in order to balance out -- about 3 more hours, based upon the earlier discussion in this chapter. Since Train No. 14 is quite short (2:07 hours), he pauses at this point to ponder the P.M. tripper problem a little. He feels that it is time for him to study the remaining evening runs and to transfer the remaining 3 hours of time to the "board" in terms of the shortest tripper buses.

The shortest P.M. tripper appears to be Train No. 11, of 50 minutes duration. This bus is listed on the extra board as a P.M. tripper in spaces $20 \mathrm{~B}-\mathrm{R}, \mathrm{T}$ and U . The elapsed time is entered on the Subdivision Sheet, and the "in" time and total time are checked off.

Inspection of the Subdivision Sheet reveals two other P.M. trippers -- Trains Nos. 4 and 7, each of 1:29 hours duration. These are entered in spaces $21 \mathrm{~B}-\mathrm{R}, \mathrm{T}$ and U and $22 \mathrm{~B}-\mathrm{R}, \mathrm{T}$ end U , respectively, and checked off the Sublivision Sheet.

These.tmee P.M. trippers - Trains Nos. 11, 4 and 7 - total 3 hours and 48 minutes, approximately the 3 hours sought for transfer to the extre board.

Allowing for the four early straiehts (spaces 1,2, 3 and 4) which cannot be touched without reducing the number of early straights below those in the existing schedule, there are only two remaining "openings", on the present objective of 19 runs. These are Trains Nos. 15 and 20. There are, however, three remainine buses to be transferred from the Subdivision Sheet - Trains Nos. 10, 12 and the P.M. portion of Train No. 14, where a temporary halt was called in adding reghlar runs to the Run Gut Sheet. At least one of these will have to go to the extra board under the present schedule "objective". Thercfore, there will be at least four (4) P.M. trippers.

Looking now at the Run Cut Shect rather than the Subdivision Sheet, the schedule marer studies Train No. 20 (Space No. 6). This is a piece $3: 25$ hours long. Between 4 and $4 \frac{1}{2}$ hours are required to combine with Train No. 20 to make an 8-hour run. Train No. 10, "out" at 2:17 and "in" at $6: 23$, has a length of $4: 06$ hours. Thus, No. 10 is hooked up with Train No. 20 in space 6 to give a run of $7: 31$ hours in length. (See entries in spaces $6 \mathrm{~B}-\mathrm{I}, \mathrm{J}, \mathrm{K}$ and L). The appropriate entries and checks are made for Train No. 10 on the Subdivision Sheot.

Thore now remain two F.M. buses, Trains Nos. 12 and 14, only one of which can be linked with a remaining early A.M. vehicle. The schedule maker now takes the shortest of these -- No. 14 with a length of $2: 07$ hours, and adds it to the P.M. trippers on the extra boerd. (See spaces 23.B-R, T and U). Appropriate entries and checks are placed on the Subdivision Sheet (2:07 this entry plus I:29 A.M. tripper uses up Train Ne. 14 completely .3:36 houre total).

The remainine train, No. 12, is entered on the "early" portion of the sheet in spaces $5 \mathrm{~B}-\mathrm{I}, \mathrm{J}$, and K , and checked off the Subdivision Sheet. A check is now made of the Subdivision Shect to see that all P.H. trains have been properly transferred to the Run Cut Sheet.

It wns stated at the outset that the schedule maker was striying for an okjective of $8: 15$ averrge hours per regular run. Along the way this figure was revised to an average of $8: 11$ or less. A check may now be made to detormine the "actual" average at this point:

$$
\begin{array}{lrr}
\text { Add the A.M. tripper time } & 5: 18 & \text { (space } 17 \mathrm{U}) \\
\text { Ada the P.M. tripper time } & \underline{5: 55} & \text { (space } 24 \mathrm{U} \text {) } \\
\text { Total tripper time } & 11: 13 & \\
\text { Total time from terminal sheet } & \underline{164: 54} \\
\text { minus total tripper time } & \underline{11: 13} \\
\text { Equals "reculor run" time } & 153: 41 \\
\text { 153:41 divided by } 19 \text { runs }=8.1 \text { or } 8: 06 \text { hours } \\
& \\
\text { against the original objective of } 8: 15 \text { hours. }
\end{array}
$$

The trains are now all listci on the rur cut shect, and the schedule maker is ready to "meke the cut". He is free to use his own fudgment, and to start anywhere on the sheet that he wants to.
"Makine" the "Cut"

The schedule makor eiccted to staxt the cut with Train No. 1. This is a 14:05 hour train. If "hooked un" with a 2 -hour piece in the A.M., it would give an corly straight run and another regular run (two-piece) of 8 hourg duration. The possible A.M. piece is Train No. 19 (space lon), which is $2: 08$ hours lone. $2: 08$ plus $14: 05$ equais $16: 13$, which would "do the trick". Train ivo. I would, therefore, be cut into two pieces - an early straight run of 8 hours duretion and a later piece of 6 hours length to tie in witli Train No. 19. Referonce is made to the Subdivision Shect to find the closest relief time which will give an early straizht run. Train No. I cones out of the sorage at $4: 36 \mathrm{H} . \mathrm{M}$. He can be relieved at 12:44 on the outbound trip -- which would give a length of $8: 03$ hours. A small vertical mark (1) is placea above 12:44 on the Subdivision Sheet, and the elansed time of 8:08 hours is written in on the sheet above the relief times of Train No. I and to the left of the vertical mark. The entry
on the Fun Cut Sheet for Train No. ․ (space IA-K and L) is completed by filling in the relicf time (12:44). and the actual vehicle time (time worked 8:08).

The alert schedule maker assumes that everything on the Run Cut Sheet is "in motion"; thet is, that nothing entered so far is "fixed", and that he must be prepared to make as many changes as necessary in order to get the best over-all result from his run cut.

He can now complete Train No. 19 (space 10), as the relief time of Train No. l is (at least tempororily, known. This relief time of Train No. 1 (12:44 P.M.) is entered in space $10 \mathrm{~B}-\mathrm{I}$, and the elapsed time between the relief time (12:44) and the "in" time (6:41) for the train is calculated (5:57 hours). This time is entered in space $10 \mathrm{~B}-\mathrm{J}$, and added to the 2:08 time of Train No. 19 to produce a total actual time of 8:05 hours which is entered in space $10 \mathrm{~B}-\mathrm{I}$. The time for this piece of Train No. 1 (5:57) is entered on the Subaivision Sheet to the right of the vertical line ($:$), added to the 8:08 eariy piece of Train No. I to give 14:05 hours, and the total time, which checks, is "checked off" on the Subdivision Sheet.

Reference to the Run Cut Sheet, "early" side, space 2A, shows Train No. 18, which is of $15: 29$ hours duration and susceptible of being made into an early straight run. Since there are no pieces available which might readily combine with this train to increase its length slightly, it perhaps can be broken into two straight runs of $7: 45$ hours length (approximate) each, or as near that as practicable. Reference is made to the Subdivision Sheet for relief times, and a relicf time of 12:38 P.M. on the outbound leg is selected temporarily as a breaking point. This gives a total time of 7:42 hours (from 4:56 A.M. to l2:38 P.M.). A vertical line is placed above the l2:38 time on the Subdivision Sheet, and the elapsed time of 7:42 is wittien in above the rolief times for this train to the left of the verticel mork. The 12:38 relief time is entered in space $2 A-K$, and the actual time of 7:42 hours is entered in space 2A-L to complete the entry.

The remaining portion of Irain No. 18 is entered in space 18 B , where the IN tine ($8: 25$ P.M.) is already shown. The relief time (12:38) is entered in space $18 \mathrm{~B}-\mathrm{I}$, and the length of run ($7: 47$ hours from $12: 38$ to $8: 25$ is ontered in space $18 \mathrm{~B}-\mathrm{I}$. The $7: 47$ time is also entered on the Subdivision Sheet to the right of the vertical mark (1), added to the 7:42 tine for the early portion of Train No. 18 to give 15:29 hours, the total time shown on the Subdivision Sheet. This total time is checked off.

Train No. 8 is handed in the same manner as Train No. 18, breaking it into two 7 -hour plus pieces, and entering the relief times and elapsed times in spaces $3 \mathrm{~A}-\mathrm{K}$ and L and 19 BJI and L . The Subdivision Sheet is treated in the usual fashion, appropriate times and check marks being entcred on this sheet.

The schedule maker, it is recalled, is working towards not less
than four early straight runs in order to have as many preferable runs as there are in the existing schedule. His fourth early straigit run appears as Train No: 3 in space 4. If this train can be coupled with the P.M. portion of Train No. 16, a total time of $12: 50$ plus:3:26, or $16: 16$ hours, will result. This will give two 8-hour runs. The Subdivision Sheet is consulted for an appropriate relief time, and the customary notations and checks are made on that sheet. The relief time ($2: 04$ P.M.) is entered in spaces $4 \mathrm{~A}-\mathrm{K}$ and $9 \mathrm{~B}-\mathrm{I}$. The elapsed time for the evening piece of Train No. $3(4: 42)$ is entered in space $9 \mathrm{~B}-\mathrm{J}$. The actual hours for these runs are entered in spaces 3 B-I and $9 \mathrm{~B}-\mathrm{L}$, respectively.

Droppine down to space 5.- Train. No. 15 -- the total time of this train as indicated on the Subdivision Sheet is 12:21. . Combined with the P.M. portion of Train No. 12 ($2: 46$ hours) and the A.M. portion of Train Nc. 6 ($3: 24$), this would total $18: 31$ hours, which is too lone. The schedule maker must search further for a cormbination which wịl keop him on his 8--hour average. Space 17-Train No. 2, shows a piece 5:02 hours long. If a piece $2 \frac{1}{2}$ hours lons could be removed from a cornbination of Trains 15 , 12 and 6 to build up Train No. 2 to somewhere near an 8 -hour run, perhaps this combination could be reduced to somethine nearer two 8 -hour runs. Lcoking further, the schedule maker notices that Train No. 12 (space $5 \mathrm{~B}-\mathrm{J}$) is a P.M. piece of $2: 46$ hours duration. If 5 hours can be taken off the A.M. portion of Train No. 15 to combine with this, an 8 -hour (approximate) run can be produced: "Consulting the Subdivision Sheet, he picks a relief time of $11: 17 \frac{1}{2}$, which gives a length of $5: 07$ hours for this piece. These ficcures are entered in spaces $5 \mathrm{~A}-\mathrm{K}$ and $5 \mathrm{~A}-\mathrm{J}$, respectively. The total time for the rum - $5: 07$ plus $2: 46$ equals $7: 53$ - is entered in space $5 \mathrm{~B}-\mathrm{L}$. Appropriate marks and time entries are made on the Subdivision. Sheet to indicate this.transection with Train No. 15.

Continuing with the "partition" of Train No. 15, the schedule maker again considers space 17 -- Train No. 2, the 5:02 how piece. He enters Trein No. 15 and its relief time (11:17 $\frac{1}{2}$) as discussed in the paraeraph next above in space $17 \mathrm{~A}-\mathrm{I}$. He then consults the Subdivision Sheet for another relief time which will give him a piece about 3 hours long. The inbound relief time rat 2:02 $\frac{1}{2}$ P.M. will yiold a piece $2: 45$, hours long, which, when coinbined with the 5:02 hour piece of Train No. 2, will total 7:47 hours. The new relief time for Train No. 15 ($2: 02 \frac{1}{2}$) is cntered in space $17 \mathrm{~A}-\mathrm{K}$, the elapsed time (2:45) is entered in space $17 \mathrm{~A}-\mathrm{J}$, and the total run time of $7: 47$ hours is entered in space 17 A-L. Appropriate rarkings and time entries are made on the Subdivision Sheet.

Proceeding with the "splitting" of Troin No. 15, the schedule maker eyes space 7 A - Train No. 6, as a possibility. There remains of Train No. 15 (2:02 $\frac{3}{2}$ rolief time to 6:31 P.M. "in" time) a piece $4: 29$ bours long. This, when added to the $3: 24$ hour A.M. portion of Train No. 6, would give a rogular run 7 hours and 53 minutes long. These entries are mado on the Run Cut Sheet (spaces $7 \mathrm{~B}-\mathrm{I}$, J and L. The corresponding notations are made on the Subdivision Sheet.
(as it might have boon vised) was broken into three parts in this particular cut to fill out Trains Nos. 12, 6, and 2, and to help build them up into regular two-picco runs of approximately 8-nours leneth cach. The three partions of Train No. 15 as noted on the Subdivision Sheet:

$$
\left.\begin{array}{rl}
5: 07 \text { hours } & \text { (combined with Train No. 12) } \\
4: 29 \text { hours } & \text { (combinod with Train No. 6) }
\end{array}\right)
$$

combinc to give the 12:21 hours shom for this train on this sheet, and the total time entry nay now be checked off.

Stopping momentarily to check on his procress, the schedule m-kor finds that he has taken care of 17 of the 19 regular runs which he has been striving to attain. This loaves spaces 8 and 12 (two parts of Train No. 13 coupled with trains For. 19 and 5) as yot undotormined as to relief time and lenstr.

Train IV. 13 is $12: 20$ hours in leneth, Train No. 19 is $2: 45$ hours in longth, and Troin No. 5 is $2: 08$ hours in length. This conination of troins totals 17:13 hours, or two runs of $8: 36$ (approximately) ecch. A relief time of 12:42 inbound is selectod for Train No. 13. Appropriate notations cre made on the Subdivision Shoet, and tho corresponding entries are mado in spaces $B A-J, K$ and I, and $12 B-I$, J and I, of the Run Cut sheet. Both runs produced by this cut aro of desirable lengths.

This lost stop complotes the cutting of the schedule into runs.

Calculation of Spread Tine and Pay

Tho schedulo makeriancxt step is to calculate the olapsed tine of ail. regulor twopiece runs fron the first time of the A.M. portion to the laet tine of the P.M. portion in order that the "bonus" or sproad pay tine may be known.

The spread pay provisions have been sct forth in detail elsewhere, but will be repeoted here for convenience:

Spread Time

> Spread Fay
> (per Day)

Eleven hours and over, but under eleven hours and thirty minutes 15申

Elever hours and thirty minutos and oven, but under twelve hours $30 ¢$

Twelve hours and over, but under twelve hours and trirty ninutes

50申

Spread Time (con't)

Twelve hours and thirty minutes and over, but under thirteen hours
$70 \neq$
Thirteen hours and over, but under thirteen hours and thirty minutes 95ф

Thirteen hours and thirty minutes and over, but not over fourteen hours

Columns are provided on the Run Cut Sheet (Columns "O" and "P" of Figure 42) for the Spread Hours and Spread Pay.

The calculation is made as follows:

$$
\begin{array}{ccc}
\text { Space } 5 \mathrm{~A}-\mathrm{I} & \text { starting time } & \text { 6:10 A.M. } \\
\text { Space } 5 \mathrm{~B}-\mathrm{K} & \text { ending time } & \text { 6:25 P.M. } \\
\text { Total spread time } \quad 12: 15 \text { hours. } \\
\text { Total spread pay (fron table above) - } &
\end{array}
$$

These data are entered in spaces 5-0 and 5-P. The process is continued for all two-piece runs, with comesponding entries being made on the Run Cut Sheet. (See spaces 6,7,8,9,10, 12 and 17, Columns 0 and P.) In the case of space 17 the spread time is 9 hours and 4 minutes, which does not involve additional pay, being less than eleven hours. A dash (-) is placed in the "spread pay" colum in this case.

The spread pay colum is now added $(\$ 2.50)$, and the total entcred termoraxily in space 20, Colurn "P".

$$
\frac{\text { Swapping of "Fieces" to Reduce Spread Pay }}{\text { and to Decrease "Allowed" Time }}
$$

The schedule maker's next step is to try to reduce the spread pay, and to decrease the mount of time "allowed" to 8 hours, by trying a different combination of pieces than that which he now has on the Run Cut Sheet.

To do this he sterts with the last run on the "eorly" side of the sheet which pays a spread -- in this instance the combination of runs in space 12.

The schedule maker goes through a mental procees in which he notes the leneth and mount of spread of the combination under consideration, and tries to find an (approximately) equivalent - leagthened piece wioh would bring the first CUT and last IN times closer together so as to reduce the spread hours and spread pay.

Referring to the Run Cut Shect, Figure 42, he comparee space 12 B with the Train in space 10 B .12 B is a $6: 24$ piece, and 10 B is a $5: 57$ piece. The "in" tine of 10 B is 6:41 P.M., as against 7:06 P.M. for space 12 B . If ho, thexefore, moved Train No. 13 from 12 B up to 10 B to join with Train No. 19 which pulls out at 6:59 A.M. (space $10 \mathrm{~A}-\mathrm{I}$), the spread would become 12:07 instead of the present 11:42, and would raisc the spread pay of space 10 to 50 conts instead of 30 cents, a loss of 20 cents per day. In this same move Troin No. l would drop from space 10 B to space 12 B to link up with Train Ne. 5 , with on "out" tirce of $7: 13 \mathrm{~A} . \mathrm{M}$. The now spread would figure fron $7: 13 \mathrm{~A} . \mathrm{M}$. to $6: 41$ P.M., or $11: 28$ instead of $11: 53$ as at present. This would drop the apread pay on space 12 from 30ϕ to 15ϕ, a gain of 15ϕ. On the whole swap the compny would lose 20ϕ on the first move and gain 15ϕ on the second move, a net loss of 5ϕ per day on the whole transaction.

It is also necescary, before reachine a concluaion as to the swap, to check the chance which it would produce in the anount of "tine allowed to 8 hours." Sinco both A.M. pioces in spaces 10 and 12 are of $2: 08$ length, the total time worked by the entire combination would be the same in any case. Therefore, there would be no chance in allowed time as a result of the swap. The net loss of $5 \dot{\phi}$ per day on spread time would not be offset, and, therefore, there would be no advantage to the compeny in such a swap. Under the circumstances, this swap would not bo made.

Continuing with the P.M. portion of Train No. 13 (space 12), it is checked successively against spaces? $\mathrm{B}, 8 \mathrm{~B}, 7 \mathrm{~B}, 6 \mathrm{~B}$ and 5 E in a search for possible "svaps". In each case it j.s found that these P.M. pieces are 0.11 too short for interchange with the I.M. portion of Train No. 13 as entered in space 12 B . Therefore, no swaps are made.

Moving up to space 10 on the "early" side, the schedule maker continues his search for possible opportunities to reduce the spread or decrease the allowed time. Comprang $10 \mathrm{~B}(5: 57$ piece) with $9 \mathrm{~B}(4: 42)$ and $8 \mathrm{~B}(2: 45)$, he finds thers too short fcr intorchange. The same is true of spaces $7 B(4: 29), 6 B(4: 06)$ and $5 B(2: 46)$.

Toking next space 9 B , the process is continued. This train, No. 3, has a length of 4:42. Space 8 B (2:45) is toc short for interchange. Space 7 B (4:29) has possibilities. By moving Train No. 3 from 9 B to 7 B, the spread ($6: 37 \mathrm{M} \mathrm{M}_{\text {. }}$. to $6: 46 \mathrm{P} . \mathrm{M}_{0}$) becones $12: 09$, and the spread pay becomes 504 , instead of 30ϕ, a loss to the company of 20ϕ per day. In moving 7 B (Trein Nu. 15) to 9 B , the spread becowes ($6: 53 \mathrm{~A} . \mathrm{M}_{\text {. to }} 6: 31 \mathrm{P} . \mathrm{M.}_{0}$) 11:38, or 30ф, which is no change. So for, thore would be a loss to the company of 20ϕ per day in spread pay for the swap.

This trencaction munt next be checked for its effects upon
"allowed" tine. If 9 B were combined with 7 A , the total actual hours would be $3: 24$ plus $4: 42$, or $8: 06$ total. If 9 A were combined with 7 B , the total actual hours. would be $3: 26$ plus $4: 29$, or $7: 55$ total. The present allowed time to 8 hours in spaces 7 and 9 is 7 minutes ($7: 53$). nfter the "swap" under consideration, the allowed time for spaces 7 and 9 would be 5 minutes (7:55). Therefore, 7 minus 5, or 2 minutes in allowed time would be saved

FIGURE 44.
(AUXILIARY) RUN CUT SHEET -
SAMPLE COMPANY UNDER STUDY.
by the swap. At the present wage rate for bus operators, this 2 minute saving would be worth about 3.6ϕ per day to the company. Stacked against: a lous of $2 n$.... in. in pay, the net loss of 16.4ϕ per day would discourage the schedule maker from aaking this swap. (NOTE - There are many instances every day on the sample property in cutting runs where the saving in allowed time will more than offset any increaso in spread, to the advantage oi the company.)

In comparing space $9-B$ with space $6-B$, it was found that the aproad would reanin the same after the "swap", but that onc minute in allowed tine could be saved by swepping. Despite the amall gain to the company, which is involvod (1.3ϕ per day), the schedule naker decided to make the swap to save this rinute. This involves the interchange of the entries in space 6-A with these in space 9-A.

In every day practice the schedule maker would sirply use his eraser and pencil to molre this interchange. In ordor to keep the steps intact for the student of this report, hovever, a second "auxiliary" Run Cut Sheet (Figure 44) has been included. On this sheet the student will find spaces 5, 7, 8, 10,12 and 17 basically as they are in Figrare 42, but spaces 6 and 9 have been "swapped" in accordance with the moves described in the paragraph inmediately abovo. The position of the spread changes, but it is still 50 plus 30 cents in the one case, and 30 plus 50 cents in tho other cace -- a stand off. On Fioure 42, space 5 showed an allowed time to 8 hours of 29 minutes (from 7:3l actual), while on Figure 44 space 6 shows an allowed time of 28 minutcs (from $7: 32$ actual).

This may seer to the student of the report to be a lot of trouble for a negligible seving, but it serves to illustrate a principle which, as followed by the sample company, has rosulted in sevings of many thousands of dollars annually. The saving in allowed time in such "swaps" is frequently as high as 30 minutes per swap.

Now that space 9-B has been changed (Figure 44), it must again be compared with all the two piece runs ahead of it in the list. Space 8-B is too short for interchance; a chanke night be rade with space $7-B$, but this would lose 20ф per day on apread pay; $9-B$ and $6-B$ have already been swapped to save a minute in allowed time; and $5-B$ is too short for interchange.

Sirmilorly, B-B is compred with $7-B$ (too long), 6-B (too long), and 5-B. In the latter case the spreads would still be 50ϕ and 30ϕ - no saving, and a ninute in allowed time would be lost in the interchange. This change would not be made.

7-B is next checked against 6-B. If a swap were made the spread pay would be the sarie, and the allowed time would balance out. There is no advantage to the "swap". $5-B$ is too short for interchonge.

When $6-B$ is compared with $5-B$, the latter is found to be too short for interchange.

This completes the process of "swapping pieces" to reduce spread pay, and to decrease the "allowed" time.

Equalization of Runs

Aiter checking through the spread time and allowed time as described above, the schedule maker next examines the kun Cut Sheet in an attempt to "equalize" the runs; that is, to sec that each trainman gets his fair share of the work to be performed. The "allowed" time is also reviewed in this process.

The schedule maker returns to the. Subdivision Sheet (Figure 41) and begins his examination with Train No. 1. He also follows the trains in order on tho Run Cut Sheet (Figures 42-44). The first entry on the "early" side - space l-A - shows an carly straight run of 8:08 hours length. This is a normal and satisfactory length of run, so that a check mark is placed behind the "actual" time on the Run Cut Sheet (see step "D").

The remainder of Train No. 1 may be found in space l0-B where, as part of a two-piece run, tho total time is 8:05. Looking at the Subdivision shoet, he selects an carlier relief time (12:24 P.M.) for thí train. This relief time would cut space 1 from 8:08 hours to 7:48 hours, and would raise space 10 from 8:05 hours to $8: 25$ hours. Such a move would cause space 1 to drop below 8 hours, thereby causing "allowed" time, and would cause an unbalance of work. So, the change would not be made, and a check merk would be placed behind tho 8:05 "actual" time of space 10 (sce step "E").

Continuing this process, Train No. 18 (spaces $2-A$ and $18-B$) is in two parts (7:42 and 7:47 "actual" hours), both nearly equal and under 8 hours. This entry is checked off. The same is true of Train No. 8 (spaces 3-A and 19-B). Train Mo. 3 (spaces 4 and 9 is found to be in oxact balance, and is checked off.

In following this procedure through, a train must be traced through all of its "pieces" against later trains until the last piece (which goes to the gerage) is reached, to see that runs are equalized.

Train No. 15 (spaces 5-A and $7-B$) is checked. It is in balance (7:53 vs. 7:53), so that no interchange is made. Trains Nos. 20 and 10 (spaces 6-A and B) are both "in and out of atation" pieces, so no change oen be made. Spaces 8 and 12, which include parts of Train No. 13, are checked for possible interchange. There being only a 9 minute difference between them (8:41 vs. 8:32), no swap is made.

Spacc 17 on tho early side includes Train No. 15 which, it may be recalled, was cut into three parts to make two-piece runs. Train No. 35 will also be found in spaces $5-\mathrm{A}$ and $7-\mathrm{B}$. The longths of runs in which Train No. 15 is involved are 7:53, 7:53 and 7:47-all under 8 hours and of approximatcly equal length. No swap is made.

Turning to the right-hand or "late" side of the sheet, the schedule maker looks at space 1 - Train No. 5. This is an "out and in" piece with which nothing can be done, so the 8:17 time entry is chocked off. The same is true of Trains Nos. 9, 6 and 20 in spacos 2, 3 and 4.

I'he noxt entry, is "late" space 5" - the late portion of the "owl", designated as Train No. 2. The early portion of this train is show on the "carly" side of the sheet in space I7-B, where it combines with another piece to give a run of $7: 47$ hours. The schedule makor refers to the Subdivision Shect to select a now relief timo for Train No. 2. He finds that the last relief time calculated is the $8: 2 l \frac{1}{2}$ outbound rolief time which he has already used. He, therefore, calculates a new inbound rolief time -- leaving Dumaine and Alexander at 8:33 F.M. (see Turminal Sheet) plus 6 minutes running time to the inbound relief point at Orleans and Broad (see Running Time shect) cquals 8:39 P.M., which he enters on the Subdivision Sheet behind the 8:2l⿺ $\frac{1}{2}$ tine. He crases (NOTE - shown as crossed out to preserve the continuity of the exhibit) the vertical mark (') formerly placed over 8:2l를 and the lengths of the two formur pioces of this train (5:02 and 8:19) from the Subdivision Shect, and places his ncw vertical mark over tho newly ontered 8:39 time. The run is now cut into two pioces $5: 20$ long (entered to the left of the now vertical mark) and 8:01 long (ontorod to the right of the new vertical mark).

Turning from the Subaivision Sheet to the Run Cut Sheet, space 17-B on the "early" side, ho changes the relief time from $8: 21 \frac{1}{2}$ to $8: 39$, and the actual tine from 7:47 to 8:05. This move saves 13 minutes (23申) in time alloved to 8 hours. Moving over to space 5-B on the "late" side, the rolief time for Train No. 2 is changed from 8:21- $\frac{1}{2}$ to $8: 39$, and tho actual time is dropped from $8: 19$ to $8: 01$. This run is still above 8 hours, 60 the gross saving of 23ϕ in time allowed to 8 hours bocomes also a net saving of 23ϕ in allowed time.

The trippors are also ro-checked, for if there were a tripper on the rightohand side. which was longer than some portion of a two-piece run, it may pay to "swap" it unless the changu wore offset by an increase in spread time as another result. The advantage, of coursc, in such a move, when practiceble, lies in the lact that tripper time is figured at time and one-half, whercas two-piece runs undor 8:45 hours aro paid at straight time. Furthermore, such a move might mean a reduction in "allowed" time. Offsetting "these advantages, as mentioned above, might be an increase in spread pay.

Just before he rocopiod his Run cut sheet in proper form for the typist, the schedule maker noticed a long or "high" run which might be susceptible of correction. This is the combination shown in spaco 8, "early"
side of Figure 42. This involves two trains - Nos. 13 and 19.

Working first with Train No. 19, the schedule maker turns to the Terminal Sheet (Figure 40) to sec whether additional "shifts" can bo made. If he drops the first trip of the P.M. portion of Train No. 19 down to Train No. 20, he will make the P.M. portion of Train No. 20, already 8:42 hours, too long (see "late" side of Run Cut Sheet, space 4). He cannot "raise" a trip from Train No. 19 to Train No. 18, as No. 18 is a long train which "out-spans" No. 19.

Considering next Train No. 13, the early portion of space 8, the schedule maker studies the Terminal Sheet and finds that if he should "drop" a trip down to Train No. 14, he would increase the length of that A.M. tripper by a round trip, thereby adding to his "time and one-half".

The schedule maker concludes therefore that he will leave the 8:41 hour run of space 8, "early" side, stand as it is.

Completion of the Run Cut Sheet

The rearranged Run Cut Sheet may now be recopied in proper form for the schedule typist. This is done by arranging the runs in accordance with the order of the times at which they are rolieved or pull into the garage. The recopied Run Cut Sheet is shown in Figure 45.

The following steps leading toward the completion of the Run Cut Sheet are now taken (sce Figure 45):

Step \#l. The "time allowed to 8 hours" is computed for each run.

Step \#2. The "pay hours" are computed for each run. "Actual" hours plus "allowed" hours equal "pay" hours.

Step \#3. Lines are drawn and the totals of these columns are computed.

Step \#4. The "allowed" time (extra "haif" time) for trippers is computed for cach tripper run. In this case the company "takes" the odd half-minute.

Example: space 12, "Jate" side:

$$
\begin{aligned}
& 1: 29=89 \text { minutes } \\
& \frac{1}{2} \times 89=44 \text { minutes } \\
& 1: 29 \text { plus } 0: 44=2: 13
\end{aligned}
$$

FIGURE 45.
COMPLETED RUN CUT SHEETSAMPLE COMPANY UNDER STUDY.

Step \#5. Where the tripper involves less than "one hour at time and one-half", enough. "allowed" time must be figured to bring the pay hours up to 1:30.

Example: space 18, "late" side:
50 minutes $\times \frac{1}{2}=25$ minutes
50 plus $25=75$ minutes,
or l:15 hours.
Since the minimum trippor is l:30 straight tine, the ontry in the "allowed" column must be

90 minus 50 , or 40 minutes,
in order to meet the contract.
See also space ll, "late" side.
Step 濐. The total pay hours for trippers are determined for each run. "Actual" hours plus "allowed" hours equal "pay" hours.

Step \# \# . Lines are drawn and the A.M. and P.M. tripper totals are computed.

Step \#8. The spread times aro computed for each run, as proviously discussed in some dotail.

Step \#9. The spread pay is entered in the appropriate column for each run.

Step \#10. The spread pay column is totaled.
Step \#ll. The Run Cut Shect is checked back against the Terminal Sheet ana the Running Time Sheet for accuracy of the reliof, "in" and "out" times. The schedule maker places a heavy dot.(.) behind each relie? time or "IN" tine as he checks it.

Step \#le All times are re-calculated by machine to detect any compensating errors.

Step \#13. The Run Cut Sheot is then ro-checked by schedule maker other than the one who originally made it.

Step \#14. The time between rolief points is checked to see that the operator has ample opportunity to get to his relief point, to get something to eat, etc. In this process the "in" or "relief" time of a given A.M. piece is checked with the "out" time or "relief" time
of the corresponding P.M. piece. The minimum time between reliefs for the sample line would be 25 minutes.

Step \#15. Tho entire Run Cut Sheet is re-checked on a machine. The actual and allowed hours, as well as the spread time, is recheckod on a "tape" machine. (Cases have been detected, through careful and repeated rechecking, of crrors in a single schodule which might have run contrary to the labor contract and caused an entire new "pick" of runs by the trainnen.)

Step \#16. The total actual hours on the "early" side are redetermined by machinc (1.11:59).

Step \#17. The total allowed hours are re-calculated by machine (1:47).

Step H18. The total pay hours are re-computed by machine and cross-cheched (113:46).

Step \#19. The spread pay is ro-adied by machine for a check.
Step \#20. Tho total actual hours on the "late" side are recalculated by machine (41:42).

Step \#2l. (There are no allowed hours on the "late" side.)
Step \#22. The total pay hours are ro-computed by machine (41:42), and cross-checked.

Step \#23. The three time colums for the A.M. trippers are re-added by machine. (5:18)(2:51) (8:09).

Stop 箨24. The three time coluns for the P.M. trippers are re-added by machine. (5:55) (3:11) (9:06).

Step \#25. The "Recapitulation of Runs" in the lower righthand cornor of the shoet is completely filled out from the data appearing and derived elsewhere on the sheet. This "re-cap" is added and checked. The actual hours $(1.64: 54$) in this sunmary must check the actual hours ($164: 54$) shown on the Terminal Shcet.

Stop tiz6. The "Journey Tine" is computed. This is a time allowe ance providea for in the contract to allow on operator who is "relievod on the road" after his final piece of work to get to the bus garage to turn in his trip sheets, transfors, etc. On the sample line this allowance is 7 minutes. This time is not allowed where the operator brings his vehicle out of or into the garage, or on relief between pieces of a run. An examination of the Run Cut Shoet shows such reliefs on the runs
in "aarly" spaces 1, 2, 3, 4 and 23. All other "final pieces", corly and late, and trippers pull into the bus garage. The runs which merit journey time are marked with an astorisk (*). The five runs multiplied by an allowance of 0:07 per run equal $0: 35$ hours, or 35 minutes, of journey time. This is entered on the "Recapitulation of Runs".

Step \#27. The "run numbers" are now enterod on the Run Cut Sheet, placing them in the order in which the runs pull into the garage or are relieved on the road. A series of numbers starting with " 780 " has been assignod to this line. The regular runs are numberod 780-798, and the trippors are numbered 799806.

Stop \#28. The Run Cut Sheet is again completely re-checked by the schedule maker and his checker, and "O'Keyed" by the chocker.

Step \#29. The sheot is properly "headed" with all pertinent information.

As a final step, the schodule naker calculatos the average length of his 19 rogular runs to see how closely he has approached his objective of B:Il hours longth. The actual time of the carly runs is 1ll:59. The actual time of the latc runs is 41:42. This is a total of $153: 41$ actual hours roprescnted by regular runs. 153:41 dividod by 19 equals $8: 06$ hours, which is a satisfactory outcome as against the "revised" objective of 8:11 hours.

The schodulo maker is now ready to turn the Run Cut Sheet over to the schedule typist, who sets it up in final form.

The typed Run Sheet is shown in Figure 46. It contains all the essential information of the pencil Run Cut Sheot, but in simplified and rearranged form. The uses of the Run shect will be discussed in a succeeding chapter.

F. Graphic Illustration of Run Cutting

Figure 47 has been developed as a graphic illustration of the manner in which "trains" arc cut into "runs" on the samplc property. It is a pictorial representation of the "run cut" sot forth in Figure 45. Such charts are not customarily made by the Schedule Department, butthis one has been included so that the student of the report may visualize the process described in so many words in the preceding section.

Train No. l, for example, has been divided into two pieces - an early straight run (8:08 hours length) and a later piece of 5:57 hours length.

FIGURE 47.
GRAPHIC ILLUSTRATION OF RUN CUT-
SAMPLE COMPANY UNDER STUDY.

This latter portion was connected in the run cutting process, with the A.M. portion of Train No. 19 (2:08 hours length) to form a two-piece run. Note the connecting dashed line (representing a 30ϕ spread "link") between these two pieces.

The "split" of Train No. 15 into three picces as discussed in the step-by-step description of the run cutting process, may be easily visualized from Figure 47. The "carly piece" is connected by a 50ϕ spread to Train No. 12. The "middle piece" is connected with no spread penalty to the first P.M. portion of Train No. 2. The "late piece" of Train No. 15 is connected by a 30ϕ spread to the A.M. portion of Train No. 6.

A further picture of the run cut of Figure 45 is shown in Figure 48. In this illustration bands are shown for the various runs, beginning with the earliest $A . M$. pull out bus. Each band is divided by symbols into:

> Actual time worked, Time allowod to 8 hours, Time and $\frac{1}{2}$, and Journey time.

Spread pay "links" betwoen portions of two-piece regular runs are shown by means of dotted lines. The table to the right of the graph shows the "pay" for the day in "dollars", subdivided according to the break-down given above, for each individual run.

The total pay for the Tuesday - Friday schedule of the saraple bus line is $\$ 189.67$, divided as follows:
Actual hours worked
Alloved to 8 hours
Time and $\frac{1}{2}$
Spread
Journey time
TOTAL

Amount	Per Cent
\$ $\overline{178.10}$	93.90
1.92	1.01
6.50	3.43
2.50	1.32
0.65	0.34
\$ 189.67	100.00

This is considered to be a reasonaily high proportion of actual hours to total pay hours on the sample property under present-day policies and working practices.
G. Comparison of the Fiun Cut Described Above with Other Cuts of the Same Schedule

The run cut depicted in Figure 45 includes four (4) early straight runs and seven (7) late straight runs, the same number as in the existing schedule. It will be recalled that, in the process of "shifting" the terminal sheet (Figure 38), the schedule maker set the stace for five (5) early straight runs and seven (7) late straight runs or two more straight runs than in the existing schedule.

FIGURE 48.
GRAPHIC ANALYSIS OF INOIVIDUAL RUNS -
SAMPLE COMPANY UNOER STUOY.

Figure 49 is a Run Cut Sheet prepared from the same terminal sheet as that used in setting up Figure 45. In the case of Figure 49, however, the schedule maker has succeeded in obtaining five (5) early straight runs and eight (8) late straight runs. (Early straight runs 780, 781, 782, 783, 784 and late straight runs 790, 791, 792, 794, 795, 796, 797, and 798.)

In obtaining a greater number of straight runs, an additional cost to the company has been incurred, as set forth in the following comparative tabulation:

	Figure 45	Figure 49	Increase or
Number of Runs	4	5	Decrease

(*) The definitions of "early" and "late" straight runs for purposes of this classification differ slightly from those show in the "recapitulation" blocks of the Run Cut Shects. Here they are "early" and "late" as based upon their general position on the time ohart, rather than whether thoy pull into the bus garage before or after 9:00 P.M.

As mentioncd above, these run cuts are based upon the same "shifted" terminal sheet. The same degree of skill and care was used in their proparation. In the one case (Figure 45) maximum economy to the company under the existing labor contract was the governing factor. In the othor case (Figure 49) the maximum number of preforable runs from the standpoint of the operating personnel was tho governing factor. The company can give its operators a chance at two more preferable runs for an additional expenditure of $2: 49$ pay hours ($\$ 3.04$) plus 30ϕ additional spread pay and 7ϕ additional journey time, or $\$ 3.41$ per day in all.

The question is, "Which schedule shall the company post in its pick?" The answer depends almost wholly upon "company policy", or the results of managerial decision. If the company desires maximum economy, it cen obtain this by using the run cut of Figure 45 without reducing the number of preferable

FIGURE 50.
runs below that of the existing schedule. If the company desires to increase the number of preferable runs, it can do so by using the run cut of Figure 49.

As a matter of policy at the present time the company would probably use the run cut of Figure 49 and give the mon the benefit of the two extra straight runs. Revenues are high and labor is seeking to better its position. It vould be good employee rclations to give the extra preferable runs. At another time, when revenues are on the downgrade and maximum conomy of scheduling is of paramount importance to both the company and its employecs from the long-range point of view, the run cut typified by Figure 45 would be selccted. The saving of ($\$ 3.41 \times 209$) $\$ 733$ por year due the latter sclection would be most helpful to company earnings and to the stability of ermployment in time of stress.

Another Run Cut Sheet is shown in Figure 50. This cut is based upon the same terminal shect as Figure 45, and upon the same objective of four (4) early straight runs and seven (7) late straight runs. The schedulc maker did not in this case, however, excrcise as much care in the run cut as he might have done. He has made a good run cut, but has not carried his work nearly as for as he should have. The comparison in this case is set forth below:

	Figure 45		Increase or
Number of Runs	4		Deerease

(*) Sce note under tabulation on page 151.

As mentioncd above, thesc run cuts are bascd upon the same "shifted" terminal sheet. The same number of early and late straight runs is involved. Tho difference lies in a slightly loss skilful cut in Figure 50 as compared with Figure 45. Tho additional cost to the company for the lack of perseverance on the schedulc maker's part in the second case is 0:59 pay hours ($\$ 1.06$) plus 20ϕ additional spread pay, or $\$ 1.26$ por day in all. This would be equivalent to a loss of ($\$ 1.26 \times 209$) $\$ 263$ pcr yoar duc to not carrying the run cut to its final conclusion.

FIGURE 51.
COMPARATIVE RUN CUT SHEET \#3 (FIGURE 51 VS. 45)-

The difference cited above is slight because the two jobs of run cutting were almost, though not quite, comparable. It is included ta illustrate a principle. Actually such differences grow perceptibly with the mediocrity of the schedule maker and the size of the line, and may well amount to many thousands of dollars per year -- enough to mean the difference betweon saccess and failure of the company during the lean years. For this reason the company believes that the expenditure of funds for traffic checking and schedulc preparation on a rogular, systematic basis, and the employment of technicians who are skillful, patient and caroful in the process of cutting runs, pays incalculable dividends in operating efficiency and operating cost performance.

A final Run Cut Shect is shown in Figure 51. This one is based upon the "unshifted" terminal sheet of Figure 37, and shows what may result from lack of attention to this process. The comparison of this run cut with that of Figure 45 is sot forth in the following tabulation:

	Figure 45	Figure 51	Increase or \qquad
Number of Runs			
Early straight*	4	3	- 1
Lato straight *	7	4	- 3
Actual hours	164:54	164:29	- 0:25
Allowed time to 8 hours	1:47	1:31	- 0:16
Timo and $\frac{1}{2}$	6:02	6:15	+0:13
Total allowod time	7:49	7:46	-0:03
Pay hours	172:43	172:15	- $0: 28$
Spread pay	\$ 2.50	\$ 4.30	+\$1.80
Journey time	$0: 35$	$0: 35$	-

(*) Sce note under tabulation on page 151.

This run cut, based on the "unshiftod" torminal sheet, represents an increased cost to the cormany of $\$ 1.80$ in spread pay minus $\$ 0.50$ ($0: 28$ pay hours) in straight time, or a net incroased cost of $\$ 1.30$ per day. This is equivalent to $\$ 272$ per year. Of greater significance, howover, is the reduction in the number of early straight runs from 4 to 3, and the reduction in the number of late straight runs from 7 to 4. A precipitous change of this sort at this time would have an extremely adverse effect upon employee rolations. It would be beyond the palc of sound managerial practice, in the opinion of the company, to suddenly place such a run cut as that shown in Figure 51 in effect.

A final comparison of interest is that between the run cut shown

bOS CARAGE

PRONS PICKEED ACCORDING TO SLATORITY BI GROUPS OF 10 MEN
MARCH 27, 1946

(NOTE :3-Pleoe Runs are provided for in the company's contract ith its platform personnel, but no 3 -plece runs are scheduled at the present time.)
in Figuro 49 and that in Figure 51:

This table shows the range between the best and worst of the run cuts, from the standpoint of "preferable" runs, and serves to romemphasize the importance of shifting the terminal sheet before beginning the run cutting process.
H. Ceneral Observotions on the Cutting of Runs as Practiced by the Sample Company

The sample company, as indicated in the foregoing descriptive passages, endeavors to give its platform personnel the greatest number of "proferable" runs consistent with sound economics. The preference of its trainmen for various types and kinds of runs is detemined by a periodic analysis of the runs picked according to seniority by groups of ten men. The final surmary shoct from such an analysis is shown in Figure 52.

A study of this shect reveals mony interesting facts, not all of which will bo commented upon in this volume.

Consider the runs picked by the ten men having highest seniority (first proference) at the bus garage. Of the ton, eight picked early straight runs, one pickod a straight run a littlo later in the day, and one picked a 70ϕ spread pay $2-p i e c e$ run.

Tho first nincty mon in order of choice picked as follows:
Enrly straight runs
Straight day (off bofore 9 P.M.)
\quad Total straight runs
$\$ 1.10$ 2-piece runs
$\$ 0.952-p i c c e$ runs
$\$ 0.702-p i e c e$ runs
Total 2-piece runs
Late straight runs
Owl runs
Grand total runs

$\frac{\text { Number }}{73}$		Per Cent
$\frac{5}{78}$		86.7
3		
1		
$\frac{3}{7}$	7.8	
4	4.4	
$\frac{1}{2}$	$\underline{1.1}$	
90	100.0	

COMPARIMG TYPR OT ASSTGRENT ROS

45 ©

An examination of the picks made by the ninety men ranging from 101 through 190 in seniority reveals the following preferences:

	Number	Per Cent
Early straight runs	7	
Straight day (off before 9 P.M.)	7	
Total straight runs	14	15.5
\$1.10 2-piece runs	4	
\$0.95 2-piece runs	4	
\$0.70 2-piecc runs	21	
\$0.50 2-pioce runs	8	
\$0.30 2-pioco runs	8	
\$0.15 2-pioce runs	10	
Total sproad pay runs	55	61.3
Early 2-piece (Off before 9 P.M.)	5	5.5
Latc straight runs	11	12.2
Late 2-pleco runs	1	1.1
Owl runs	4	4.4
Grand total runs	$\overline{90}$	$1 \overline{00.0}$

A study of the eighty-nine men having least seniority and preference on the bus system (Numbers 251-339) shows that they are "left" with the following "choices":

Early straight runs	$\frac{\text { Number }}{2}$	Fer Cont
Straight day (Off before 9 P.M.) Total straight runs	$\frac{1}{3}$	
\$0.15 2-piece runs	3	3.3
Early 2-piece (Off before 9 P.M.)	3	3.3
Late straight runs	60	3.3
Late 2-piece runs	$\frac{20}{89}$	67.6
Grand total runs		10.5

This analysis reveals an unmistakable preference on the part of the older nen towards an early straight run -- to get at the day's work early, to get it over with, and to have daylight hours free for themselves. It shows a tendency for the midde group to take the "money runs" -- twopiece runs with the lorgor spread bonuses. It further shows that the late runs, whether straight or two-piece, aro the least desirable, and must be worked by the younger men with least seniority.

				\square						
			\square							${ }^{\text {ors }-6}$
			-							stor-t-t
			-							wosoot
										Strose
			-	,						morers
										(tre-8
				-		-				orster
			\square							
			L			-				
䇾			\square							
				L	-	-				${ }_{\text {ser }}$
										k-z-T-2
										Wer -ot
	\%		$\stackrel{8}{\circ}$		$\stackrel{9}{2}$	寿		\%		

FIGURE 54.
AVERAGE LENGTH OF RUNS -
SAMPLE COMPANY UNDER STUDY.

Information of this type is of considerable value to the Schedule Department in teripering its "economic" considerations with an "employree relations" aspect to the extent that the earnings position of the company will perinit. It also sorves to promote understanding between the Trainmen's Association's Schedule Corrittee and the Schedule Department in their discussions of the run cut and the Assigment Sheet. "Guesses" on the Comittee's part as to the proference for certain kinds of runs is replaced by factual data showing just what the men really desire as expressed in terms of their "pick preferenco" in order of seniority. Meetings between the Comittee and the Chief Schedule Maker to discuss such matters have been conducive of much

Figure 53 is a table showing the number and porcentage of "preferable" runc on the sample property in relation to the total runs for the Spring of 1946. In this compilotion tho "contract" rather than the "pick" is used to define "preferable" runs, and all stralght runs are included as preferable runs along with $2-p i c c e$ runs paying a "spread" of 50ϕ per day or more, because this agreoment specifies that "there shall be as many straight runs as economically possiblc". On this basis, the sample company shows a system-wide porcentage of 75.8 "preforable" runs. The bus systen alone shows 81.1 percont "preferable" runs. This statement is a valuable guide to the Schedule Department in shaping its run cut policios.

The chart in Figure 54 depicts the average length of runs over a period of 18 years. This shows the extent to which the schedule makers of tho sample company have been able to hold regular runs to an approxinately 8-hour working day. It serves as a gross measure of the ability of the Schedule Departnent to avoid the payment of "allowed time" on the one hand, and "overtire" on the other hand.

Figure 55 shows the percentage of straight runs to total runs for the property over a period of 17 years. This percentage has grown from a low of 47 per cent to a present value of 72.5 per cent. It serves as a gross index of the degree to which the sample company has been able to meet the desires of its operators for straight runs, and the degree to which it has been able to reduce the percentage of 2 -piece runs involving the paymont of a spread "bonus".

The chart shown in Figure 56 expressos the relationship between the number of "preferable" runs and the number of total runs over the last 15 years. In this oxhibit all straight runs and 2 -piece runs with a spread pay of 50ϕ and over are considered to be "preferable" runs as in Figure 53. The various kinds of runs are indicated by an appropriate legend. The percentage of proforable runs has grown from 46 in 1934 to 74 at the present time. (NOTE: 3-Piece Runs are provided for in the company's contract with its platforr personncl, but no 3-piece runs are scheduled at the present time.) It is apparent from this chart that there has been a relatively greater growth in the percentage of straight runs within the growth in the number of rozular runs.

FIGURE 55.
PERCENTAGE OF STRAIGHT RUNS -
SAMPLE COMPANY UNDER STUDY.

Other forms and methods utilized in the cutting of runs will be discussed in Parts II and III of this report, which will provide a compendium of industry practices and viewpoints on this phase of the schedule making process.

The schedule raking procedure on the sample property has now been described and illustrated in considerable detail. Consideration will next be given to the methods used by the company in the distribution of schedule information to its operators, its supervisory employees and officials, and the general public.

FIGURE 56.
PERCENTAGE OF PREFERABLE RUNS TO TOTAL RUNS SAMPLE COMPANY UNDER STUDY.

Having comploted the component parts of a transit schedule, the next problen confronting a Schedule Department is that of making the basic information concerning the schedule available to the interested parties. Clarity, concisencss, and the use of effective methods for duplicating a sufficient number of copies are the basic essentials to be considered.

There are mainy views as to the best methods of settince up and duplicating schedule data, and an attempt will be made to set some of thesc ideas forth in Parts II and III of this study. Following along with the besic premisc for Pert I, at this point an exposition will be included covering the practicos followed by the compeny under study.

The media to bo discussed in this chaptor aro:

1. Run Sheet
2. Assigmment Sheot
3. Terminal Sheet
4. Run Guide Sheet
5. Comparative Statoment
6. Recapitulation of Schedulos in Effect
7. Published Schedule Data
A. The Run Sheot

The typed Run Sheet has previously been show in the chapter on Run Cutting as Figure 46. It contains all the essential information of the run cut sheet, but in simplified and roarrangod form.

Three copios of the Run Sheet are proparod by the Schedule Department -- an original and two carbon copies.

The original oopy is placed in the department's Schedule Book for ready reference in a multiplicity of uses. It furnishes, for example, a basis for tho comparison of all ogsential information on runs when building a new sohedulo for the lino, or in making up comparative statementi, and so on.

One carbon cony is sont to tho station master of the division out
of which tho linc oporates. Ho uses it for goneral information concerning runs, and the station clorks use it spocifically in the task of preparing in advance for the issuanco of transfers to the trainmen. The nurubers of runs, their lengths, otc., scrve as guides to the nurber of "blocks" of transfers to be set up for issuance and the quantities in each block.

The scoond carbon copy is sent to the paymaster, who uses it to obtain payroll information for the tripper runs, as these do not appear on the Assignmont Shoet. The paymastor also uses the Run Sheot as a check on the times of rogular runs, to seo that he has set up the pay time corroctly.
B. The Assignment Shoct

The Assignment Shect, Figure 57, is essentially a modiun for grouping runs into six-day assignments for selcction by the trainmon in accordance with their soniority. In its finally tjped form, Figure 58, it sorves as information to the trainmen in thoir "picking" of runs, and as a. place whore they may "cign" for the runc solcetod.

Tho source of information for proparing the Assignment Shect is the run cut sheot show in Figure 45.

Picking of Runs

The following general provisions of the agreement between the company and its operating personnel govern the picking of runs:

1. Motormen, conductors and bus operators shall be entitled to the runs they consider best, in accordance with the length of time that they shall have been in continuous service of the Company, employed in the position of motorman, conductor or bus operator.
2. Motormen, conductors and bus operators shall be allowed to solect runs, or groups of runs, they consider the best on the lines at the division where they are working when they are entitled to such choicc.
3. Motormen, conductors and bus operators who are allowed to solect runs in accordance with (these provisions) shall select runs according to their rospective position only -- that is to say, motormen shall be allowed to select motormen's runs only, conductors shall be allowed to select conductor's runs only, bus operators shall bo allowed to seloct bus runs only.
4. Such assignments will remain in force for a period of sixty (60) or more days, except when the schedulo or schedulos are changed.
5. If schedule or scheaules bire changed and regulor runs are deoreased, a general pick will be held.
6. If schedule or schedules are changed and regular runs are added end the general pick ha's no't been in effect for sixty (60) days, then line picks will be held. It is agreed that a line pick shall not remain in force for a period of nore than sixty (60) days.
7. It is further agreed that motorinen, conductors and bus operators shall be allowed a general pick of runs at the division where thoy are working at intervals not to exceed five (5) months.
8. It is further agreed that when fivo (5) or more runs become vacent (such is usually caused by men loaving the service) on any one work board a general pick at that division will be held, providod, however, that the general pick being worked at the time the five (5) runs become vacant has been in effect sixty (60) or more days.
9. The proviso that general picks remain in effect for a period of at least sixty (60) days before a general pick is held shall not apply when changing from winter to summer or fron summer to winter schedules.
10. It is further understood that when line picks are held that there will be no decrease in the number of regular runs scheduled. It is also agreed that when line picks are held that the types of runs on the new schedules, will be as near the same as the old schedules as possible.
11. By a schedule change is meant when one or more regular runs have been added, or when the schedule time picked of a regular run has beon incroased by more than twentyfive (25) minutes.
12. It is agreed that when the schedule time pickod of a regular run has been increased by more than twenty-five (25) minutes, all added time in excess of schedulo time picked shall be paid for at the rate of time and onehalf, and thero shall be no limit to the amount of time that a mun may be decreased, provided that no deduction in pay hours shall be made for time decreased.
13. When a part trip is aaded to a regular run the regular man operating this run will have preference of working the additional timc at time and one-half pay provided the extra time added does not exceed one hour and thirty riinutes. If tho added time exceeds one hour and thirty rinutes, the extra man will be given the preference.
14. If any emergency schedule remains in effect for more than seven (7) days the trainnen or bus operators of that line will be allowed a general pick or a line pick,
depending upon the length of time tho general pick then being worked has beon in effect.
15. Regular men who are doprived of a run by reason of an omergency schodulo or line pick shall bo given an open run, if thore be any, or shall be pald for all timo lost during the period in which the schodules are being picked.
16. General picks shell be allowed on special schodules that are effective on such days as Good Friday, Christmas, etc. Regular schedules in effect just preceding such special schedule will be roinstatod on the day following the special schedulo without any further selection of runs being allowed, unless somo change in the regular schedule has been made that will warrant a goneral pick.
17. All schedules oxcopt omergency schodules, shall bo posted in the lobby of the station where the men are working at least forty-oight hours before comnencement of selection of runs.

There are other provisions pertaining to the picking of runs, but these are the ones of special interest in connection with the discussion of tho Assignment Sheet.

Grouping Runs into Six-Day Assignments

The agreement between tho company and its trainmen spocifies that "schodules shall be so arranged as to allow regular trainmen and bus operators six days per week and approximately oight hours per day". Onco a company adopts the policy of liniting tho number of days por weok that a regular trainman shall work, it becones necessary to work out some plan for systematically controlling the number of regular men who shall bo "off" during each day of tho woek.

Under the plan used a regular man may select the day of the week he wishos to be "off" according to his seniority. Thus, men with a high seniority can select Sunday as their "off" day if they so desire.

The Schodule Department assembles the runs of a schedule into "blocks" of work, each of which constitutes a week's work for a regular trainman. One advantage of this plan is that trained schedule men can usually work out a grouping of runs which is more equitable for all concerned than that which would result from permitting a man to first solect the day of the week which he wishes to bo "off", and then to solect those runs which he wishos to work on the remaining days. Another advantage is that all or pretically all of the regular runs on the Monday, Tuesday to Fridey, Saturday
and Sunday schedules can be grouped into. "blocks" to be picked and operated by regular men, thereby holding to a minimum the number of extra men required for the operation of schedules. A third advantage of the plan is that the manner in which the schedule men group runs can be discussed and agreed to before hand by the trainmen through the Trainmen's Association's Schedule Comittee. A final advantage is that the time required to complete a "pick" is materially reduced. A disadvantage of the plan is that it puts more work on the Schedule Department.

Procedure for Determining "Days Off"

The procedure for grouping runs will be explained in terms of the samplo bus line for which a Tuesday to Friday schedulo has been devoloped in this roport.

The Run Cut Shcet for this Tuesday to Friday schedule is shown in Figure 45. The Run Cut Sheots for Monday, Saturday and Sunday schedules have not been included, although pertinent data from thon havo been recorded on the Assignment Shoet (Figures 57 and 58).

An examination of these Run Cut Sheets shows that the following numbers of schedulod runs are to be operated by rogular men:

	Monday Schedule	Tuesday to Friday Schedule	Saturday Schedule	Sunday Schedule
Regular runs to be operatod	d 20	19	21	16
Number of days per woek	1	4	1	1
Pieces of work	$\overline{20}$	76	$\overline{21}$	16
Total number of pioces of work for rogular men for 1 Monday				
Total number of pieces of work for regular men for 4 weekdays 76				
Total number of pieces of work for regular mon for 1 Saturday				
Total number of pioces of work for regular men for 1 Sunday				
Total number of pleces of work for regular men for geven days $1 \overline{3}$				

When this total of 133 pieces of work is grouped into blocks of six days work per man, there will bo

$$
\frac{133 \text { pieces of work (} 7 \text { days) }}{6 \text { days work por man }}=22 \text { "blocks" and } 1 \text { piecc. }
$$

The next step is to determine how many rogular men can bo "off" during each day of the week. This is done in the following manner:

Mon. Tues. Wed. Thurs. Fri. Sat. Sun.

Total nurabor of "blocks"	22	22	22	22	22	22	22
Runs shown on Run Cut	$\underline{20}$	$\underline{19}$	$\underline{19}$	$\underline{19}$	$\underline{19}$	$\underline{21}$	$\underline{16}$
Number regular men "off"	2	3	3	3	3	1	6

or a total of 21 men off. Consideration must now be given to the 1 piece of work left over in the division by 6 days performed above. This is a regular run which, on the property under study, is workod by an extra wan. Since the regular men have shown a preference for getting "off" on Saturdays and Sundays, it is company policy to arrange for as many of them to do so as possible. By placing the one piece of work left over on Sunday, the total number of regular men who can get off each day of the week becomes:

Monday	2
Tuesday	3
Wodnesday	3
Thursday	3
Friday	3
Saturday	1
Sunday (6-1)	$\frac{7}{2}$
TOTAL	22

It would be possible to place this extra piece onywhere in the week where it would best fit. This the schedule maker must determine in linc with current policies.

Policies to be Observed in Assembling Aseignment Sheets

The next stop is to assemble the regular runs from the run cut sheets into "blocks". This procoss will be described in detail below. In general, it consists in setting up the "off" days in each block, and then placing the more preferable runs on the Assignment sheet, starting with the firat block. As previously indicated, the trainmen consider the oarly straight runs to bo the most preferable. Following theso nre the "high-spread" morning two-picce runs, and so on.

In order to producc Assignment Sheets which will be acceptablo to its operators, the company has a verbal agreement with them, effected through the Trainmen's Association's Schedulo Comnittee, which meets frequently with tho Chief Schedulo Maker. This verbal agreement covers the following major points:

1. The "straight day" runs, the " $\$ 2.10$ sproad" runs, the "956 spread" runs, the "70申 spread" runs and the "50申 sprend" runs will be considered as preferable runs,
and should be off on Sunday wherever possible．
2．The＂off＂deys on Sunday should be divided between the＂carly straight＂runs，the＂\＄1． 10 spread＂runs， the＂95申 spread＂runs，the＂70申 spread＂runs and the ＂50ф spread＂runs．

3．When not possible to let all of the preferable runs off on Sunday，they should be off on Saturday，follow－ ed by a＂straight day＂run on Sunday．

4．The＂ 70ϕ and 50ϕ spread＂runs should bo tine same （havo spread）on Saturday as weokday，but in the case whero spread runs are not available on Saturday，they should heve a straight day．A＂50申 sproad＂run on Saturday should not be coupled with a＂\＄1．10， 95ϕ or $70 \dot{\phi}$ spread＂run on weekdays．

5．All of the preferable runs should go to work each day＊ （including Saturday）at the same time as nearly as practicablo；whore not practicable，tho Saturday and Sunday run should get off as early as possible．

6．The＂ 30ϕ and 15ϕ spread＂runs will be off on Satur－ day if possible，providing that all of the＂straight＂ runs，＂\＄1．10，95申＇，70申 and 50申 spread＂runs are taken core of first．

7．The early＂two－piece＂runs（off bofore 7：30 P．M．）will bo given a straight，run on Saturday and Sunday whorever possible，even at the expense of breaking a 6－day late straight run on the Assignment Sheet．

8．In assembling the＂lato straight＂runs（off between 7：30 P．M．and 1：00 A．M．）six（6）day straight runs should bo given wherover possible，regardless of the time the day＇s work is finished．In this connection the finishing tine of oach day！＇s．work will be kept as near the same time as practicablo．

9．In assembling tho＂late＂runs，the maximum possible time should be allowod between the finish of the day＇s work and the start of the next dey＇s work．

10．On those lines which operate two＂owls＂，the two pieces left over should be placed on an．＂All American！run and be worked on consecutive deys．（See＂Glossary＂ for definition of＂All Americen＂）＇．

11．On the＂All American＂runs the＂day off＂should not follow tho morning that the＂owl＂is worked．
12. The "All American" runs should not include "spread" unless of the 30ϕ or 15ϕ variety.
13. Spread runs should not be worked as "extra assignments".
14. In general, assignments should be given preference in the following order:
(Straight day run
(\$1. 10 spread run
a. (95申 spread run
(70ф spread run
(50申 spread run
b. 30ϕ spread run
c. 15ϕ spread run
d. Early two-piece run
e. Late straight run
f. Late two-piece run
g. Owl run
h. "All American"
15. Six (6) hours or more should be allowed between the completion of the day's work and the start of the following day's work.

These "policies" are, of course, subject to constent revision in the light of experience and as the result of discussion with the Trainmen's Association's Schedule Committee.

Procedure for Setting Up the Assignment Sheet

The schedule maker (caller) and an assistant (recorder) work together in setting up the Assignment Sheet. A blank assignment sheet form and the Monday, Tuesday to Friday, Saturday and Sunday run cut sheets are the materials required.

The Assigment Sheet is properly headed, and "Block Numbers" are filled in the extreme left hand column. Twenty-two (22) numbers and one "Ex" (for "extra") are entered, in accordance with the previous calculation.

Since there are to be 7 Sundays off, the word "OFF" is writton

FIGURE 57.
under "Sunday" in the seven block numbers 75 through 81. The Saturday off is listed opposite Block No. 82. The three Fridays off are entered opposite Block Nos. 83-85, the three Thursdays opposite Block Nos. 36-88, and so on. The total number of entries is checkod to soe that 22 spaces have been utilizod.

Tuesday-Friday Schedule

The schodule makor calls, and the recorder enters, the runs for the Tuesday-Friday schedule. He begins at Block No. 75 and lists the most preforablo runs. There arc 7 Sunday runs off. Against thesc he bas 4 carly straight runs and 2 "hj.gh spread" (50申) runs. This gives him Sundays enough to cover all high preference runs, plus one over to apply against the best 30ϕ spread run. He then calls the proferable runs in the order in which thoy pull out of the bus garage; for example, Run 781 (Block No. 75), Run 780 (Block No. 76), Run 782 (Block No. 77), Run 783 (Block No. 78), and so on, through Block No. 81. In each case the full data describing the run are entered under "Tuesday", and the Run Number is carricd across the sheot under "Wodnesday", "Thursday" and "Friday". The runs are checked off the Run Cut Shoot as they arc entercd on the Assignment Shoet.

In dociding on the bost 30ϕ sproad run to placc against the seventh Sunday, the length of run and "time off" werc both taken into account. On this basis, Run 784 was sclected.

Attontion is next given to the one Saturday off. The "second best" 30ϕ spread run (in the opinion of the schedulo maker as governed by the vorbal agreenent), No. 786, is ontered under Tuosday .- Friday opposite Block No. 82.

The next days "off" are tho three Fridays (Block Nos. 83-85). The noxt most proferablo runs are the throc remaining 30ϕ spread runs. They aro ontorod in tho following order of proference -. Run No. 788 (shortost of the threc) -- Block No. 83; Run No. 787 (gets off the carlier of the two romaining) -- Block No. 84; and Run No. 790 (latost of the thrce) -- Block No. 85. The listing of these runs in order of preforence paves the way for ontering the best Sunday runs in ordor when they are called.

At the boginning of ontoring runs on the Assignment sheet for the "blocks" in which "weckdays" are of'f, the schedule makor sets up a rough "tally shoct" on which ho cnters a briof duscription of the runs as the recorder places them on the Assignment Shect (for cxample, 788-2~piece"off" 6:41 P.M. - spread 30 ${ }^{\text {) }}$. Since "Friday" is tho day off, no entry is made at the outset undor the Friday column opposite Block Nos. 83-85.

With the listing of the last 30ϕ spread run, all the "preferable" runs have beon used up, and the schedvle maker has left the late $2-p i c c o$ runs and tho late straight runs.

The next three blocks (Nos. 86-88) are those for which (tentatively) Thursday is "off". The schedule maker examines the remaining runs for order of preference. There are three runs which get off at approximately the same timo - 791, a straight run, off at 8:25 P.M.; 792, a twopiece run, off at 8:39 P.M.; and 793, a straight run, off at 8:52 P.M. Since all get off at the same time, ho considered either straight run to be better than tho two-piece run. Of the two "straights", he chose the earliest "in" time as the best. Accordingly, Runs Nos. 791, 793 and 792 were entered on the Assignment Sheet in Block Nos. 86,87 and 88 respectively, entered on the "tally sheet" for future reforenco, and checked off the Run Cut Sheet. On the Assignment Sheot, Thursday showed "off", and the number of the runs wero entcred under "Friday".

Run No. 792 is the last run on the "early" side of the Run Cut Sheet. Its 8:39 P.M. "off" time is far superior to anything on the "late" side of the sheet (oarliost time "in" - 11:05 P.M.) This double checks the schedule maker's Judgment in using Run No. 792 in Block No. 88 in proference to a late straight run.

The next three blocks (Nos. 89-91) are those with Wednesdays (tentatively) off. The schedule maker studies the "late" side of the Run Cut Shoet, and finds the runs to be all of about the same length. Ho lists them, therefore, in an order of preference based on the earliest time "off". Run 794 is placed in Block No. 89, and Run 795 in Block No. 90. Since the "owl" is always off on a Tuesday, the recorder warns the caller that there is "only one more OFF before the 'owl'". There are three runs left unchecked on the Run Cut Sheet - Nos. 796, 797, and 798 (the "owl"), and one more Wednesday off to be handled before getting to Tuesday off and the "owl". The "owl" automatically falls to Tuesday, leaving Run No. 796 as the more preferable of the two remainins runs as to time "off" to be entered in Block No. 91. Runs 794, 795 and 796 are ontered on the tally sheet, checked off the Run Cut Shect, and appropriately entered on the Assignment Sheet as Run Numbers in the Thursday and Friday columns, as well as the full description entered under Tucsday.

Since Run No. 797, "off" at l:13 A.M., is proferable to the "owl", it is entered in Block No. 92, while Run No. 798 is entered in Block No. 93. Both are chocked off the Run Cut Shoot, entored on the tally sheet, and appropriately noted on the Assignment Sheet under "Wednesday", "Thursday" and "Friday".

The schodule maker has now listed all nineteen (19) regular Tuesday - Friday runs on the Assignment Sheet, which checks against the "recapitulation of runs" on the Run Cut Sheot. He is now ready to list the "All American" runs, which, at the request of the trainmen, are dropped in space below the so-called "regular" blocks of work on the Assignment Sheet. To do this, all entries are erased from the blocks tentatively numbered No. 94 and below, a "block space" (formerly No. 94) is left open, and the numbers "94, 95, 96 \& Ex." are entered below the "skipped" space.
(NOTE: The term "All American" run is a purely local term used to designate a "block" made up of regular runs not worked by regular men on their days off. These runs appear on the lower portion of the Assignment Sheet under the heading "All American". They represent assembled blocks of 6 day's work, as pieces over and above this are "dropped" to the extra board.)

The initial objective was 226 -day runs. Since all regular muns have been "used up" in 19 blocks, there must be 22 minus 19, or 3 "All American" blocks to be listed at the bottom of the sheet. To list these runs, the schedule maker refers to his "tally sheet" of runs listed for blocks other than Saturday, Sunday and Monday off.

Since the first "All American" space (Block No. 94 calls for "Tuesday" off, the observer can handle 4 (Tuesday-Eriday) minus 1 (Tuesday), or 3 runs in this lolock. The schedule maker trys to give him three runs of just about the same characteristics, and refers to the tally sheet to find them. The three 30ϕ spread runs (Nos. 790, 788, and 787) are somewhat similar as to "off" time and langth. The first one, in decreasing order of "time off", is No. 790, which is called to the recorder and crossed off the tally sheet. It.is recorded in Block No. 94 - Wednesday. An examination of the Wednesday column shows this run to have been entered in Block No. 85 Wednesday in a previous step. Since it cannot be operated twice in one day, Run No. 790 is crased from Block No. 85 - Wednesday, the word "OFF" substituted in lieu thereof, and Run No. 790 entered in Block No. 85 - Friday to make the fourth day in that block. The full description of Run No. 790 is also entered in Block No. 85 - Thursday, following Wednesday "off". (See steps marked "A" in. licu of crasures for this transaction).

Similarly, when Run No. 788 is enterod in "All American" Block No. 94 - Thursday, the ontry in Block No. 83-Thursday must be shiftod to Block No. 83 - Friday. (See steps markod "B").

In the case of Run No. 787. (Block No. 94 - Friday) as entered in Block 94 - Friday, no "swap" was needed, as No. 787 was already the Friday "day off". (See steps marked "C").

There are now a total of 20 blocks listed on the Assignment Shect.

The next "All American" block (No. 95) can take 4 Tuesday - Friday runs, since Monday is the day off. Tho schedule maker looks for the four "next best" runs which will go well together, and settles upon Nos. 794 (off 11:05 P.M.), 793 (off 8:52 P.M.), 792 (off 8:39 P.M.) and 791 (off 8:25 P.M.) These are entered in decreasing time order in space 95 - Tuesday, 95 - Wednesday, 95 - Thursday and 95 - Friday, rospectivoly, and checked off the tally sheet. Tho shifts or entries designated by tho letters
"D", "E", "F" and "G" are required in this process.

The schedule maker has one more block and four spaces (No. 96 Tuesday through Friday) in which to enter the four remaining runs on the tallij sheet. Starting with the "owl" ("in" 4:40 A.M.), they aro listed in decreasing time order across the shoet. No chenge is needed for the "owl" (H), which is normally off on Tuesday. This run is checked off the tally shoet. Numbers 797, 796, and 795 are entored and crossed off the tally sheet. The "swaps" or entries indicated by the latters "I", "J" and "K" are required in ordor to complete these entries.

Having completed the transactions listed above, all Tuesday Friday runs have been placed on the Assignment Sheot, which may now be double - checked to see that the right number of "days off" of each kind remain on the sheet after all "swaps" have been made.

Monday Schedule

The data for the Monday schedules are obtained from the Monday run sheet, and entered on the Assignment Sheet, following the general procedure described above.

Since regular trainmen like to arise at the same time each morning, an effort is made to match the "starting" times of the morning runs for Monday with those of the Tuesday - Friday schedule. The recorder advises the caller that the first Tuesday - Friday straight day run goes to work at $4: 36$ A.M. The schodule maker seeks a'similar run on the Monday schedule and finds that Run No. 781, Train No. l, meots this specification. This run is, accordingly, entered in Block No. 75 - Monday.

Similarly, early straight runs 780, 782 and 783 aro entered in Block Nos. 76, 77,78 - Monday.

The rocorder advisos the schedule maker that he is looking for a Monday 50ϕ spread run starting about $6: 10$ A.M. to match with the Block No. 79 Tuesdey - Fridey schedule. There are no 50ϕ spread runs on the Monday run sheet, so the schedule maker selocts an early straight run with the same "out" time - Run No. 784, Train INo. 12, out at 6:10 A.M. This is entered in Block No. 79 - Monday.

To meet Block No. 80 - Tuesday, a 30ϕ spread run on Monday getting off at 6:I7 P.M. is available, but the schedule maker chose instead the 15ϕ spread run No. 785, starting at the same time in the morning ($6: 22$ A. M.) and getting off at 5:41 P.M. This temporary: selection is subject to a possible later shift.

The next requirement is for a 30ϕ spread run leaving the station at 6:53 A.M. The nearest available Monday run is No. 788, a $15 \dot{4}$ spread run leaving the garage at $6: 53$ A.M., the same starting time. Following this, a 30ϕ spread run starting at $6: 37 \mathrm{~A} . \mathrm{M}$. would be required to match with Block No. 82 - Tuesday. An examination shows no exact matching time available, but there is a 30ϕ spread. Monday run leaving the garage at 6:32 A.M., just 5 minutes carlier than tho Tuosday - Friday schedulo.

To give the schedule maker an indication of what is "coming up" on the Assignment Sheet, the recorder calls for two runs -- one a 30ϕ spread "out" at 6:59 A.M.; the other a 30ϕ spread "out" at 6:46 A.M. The schedule maker cen match the $6: 59$ time with a 30ϕ spread run, which is entered in Block No. 83 - Monday. He can also match the 6:46 time, but with a 15ϕ spread run instead of a 30ϕ spread. This run is enterod in Block No. 84 Monday .

The next natching requirement is for a 30ϕ spread run leaving the garage at $7: 13$ A.M. There is a 15ϕ spread run on the Monday run cut shect -- Run No. 789, Trains Nos. 6 \& 7, "out" at 7:18 A.M., just 5 minutos off the Tuesday - Friday starting time. Before deciding to enter this mun in Block No. 85 - Monday, however, the schedule maker decides to stop, and "take stock" of what is required on the Assignment Sheet and what he has available on tho Monday run sheet. He İinds on the "early" side of the run sheet three (3) remaining runs - No. 791, 2-picce, in station at 7:13 P.M.; No. 792, 2ゅpiece, in station at 8:41 P.M.; and No. 793, a straight run, in station at 8:45 P.M.

The schedule maker wants to give Block No. 85 the same type of run on Monday as on Tuesday - Friday, but he must also look after Blocks Nos. 86, 87, and 88 and "All American" Block No. 94 to see what they need. "All American" Block No. 94 - Wednesday shows a 30ϕ spread run "off" at 7:06 P.M. This is a better run, from the standpoint of "off" time, than those listed for Tuesday - Friday schedule in Blocks Nos. 86,87 and 88 . The 2-piece run No. 791, "in" at 7:13 P.M., is a possibility for filling out the All Amorican run in Bloak No. 94. It does, however, have a 30ϕ spread, and in accordance with the verbal agreoment an effort should be mado to match it with some 30ϕ sproad run further up the sheet, all othor conditions boing equal. It was decided, thorefore, to put Run No. 789 on the All American, and to put Run No. 791 in Block No. 85. This puts the "money" to the top of the shoet. The resulting "in" and "out" times are not too badly off, ac an examination of the Assignment Sheet will show.

Since the two remaining All American runs are "off" on Mondays, the lower portion of the Monday column has veen completed. Attention is next directed to Block No. 86, and to the remaining runs on the carly side of the Monday run cut sheet, namely, Nos 792 and 793. No. 792 (Monday) is a 2piece run "off" at 8:41 P.M. and No. 793 (Monday) is a straight run "off" at 8:45 P.M. It was decided to put No. 792 in Block No. 88 to match the 2piece Tuesday - Friday run "off" at 8:39 P.M., and to put No. '793 in Block

No. 86 to fill out the straight run in that block. Blook No. 87 at this point is still open.

It becomes necessary to move to the "late" side of the run cut sheet for a run to fill out Block No. 87 - Monday. There is availablo a straight run "off" at 9:08 P.M., which matches fairly well with the 8:52 P.M. "off" time of Block No. 87-Tuesdey. This run is entered in Block No. 87 - Monday.

The schedule nakor now drops down to the "owl", Block No. 93, and begins to build the romaining blocks up in "reverso" order -- that is, Nos. 93, 92, 91, 90 and 89 in that order. A chock shows that there are five remaining runs for these five openings.

The "owl" is enterod in Block No. 93 ("off" time identical). Run No. 798 is entered in Block No. 92 ("off" timo identical). Run No. 797 is entered in Block INo. 91 ("Off" time identical). Run No. 796 is entered in Block No. 90 ("off" time within two (2) minutes of "ofi" timo for Tuesday Friday schedulo). Run No. 795 is entered in Block No. 89 ("off" time within 40 minutes cr Tuesday - Friday schedule) All the Monday runs in these blocks, like the Tuesday - Friday runs, are "straight" runs, so that no straight run blocks have been broken up in the process.

Saturday Schedule

Having corpleted the placing of the Monday runs on the Assignment Sheet as described above, the process is repeated with the Saturday runs, using the Tuesdey - Friday ontries as a guide.

Straight runs with matching, or nearly matching, starting times are entored in Saturday Blocks Nos. 75-79. Since there are no 50申 spread runs available, the shortest and earliost "off" remaining straight run is entered in Block No. 80. The last early straight run is placed in Block No. 81 Block No. 82 has Saturday "off".

The first Tuesday - Friday 2-piece run occurs in Block No. 83. The schedule maker studies the runs in Block No. 83 and following blocks, comparing them with All Amorican blocks Nos. 94, 95 and 96. Blocks Nos. 83, 84 and 85 are better runs than the All American runs from the standpoint of "gotting off" time, so that a mark is placed across the column line betweon Saturday and Sunday and between Blocks Nos. 85 and 86 on Figure 57. This is the placo where the schedule naker will "jump" to the All American in making his entires (see stop "L", Figure 57). The next three 2-piece runs, in order of "earliest time off", are entered in Blocks Nos. 83, 84 and 85.

Having reached the "jump" mark ("L"), attention is directed to the
first All Aroorlcan block. Tho Tuesday - Friday schedule calls for a 2-piece run "off" at 6:36 P.M. (Block INo. 94 - Friday). With this is matched Run No. 790, a 2-piecc run "off" at 7:IO P.M.

The next All American block (No. 95) is checked against Blocks 86, 87, and 88, and. it was decided that, in genoral, these blocks wore bettor then the second "All Amorican" from tho standpoint of "getting off" time. A socond "jump" mark was placod at the point markod "M" on the Assignment Sheet, Figure 57. These three upper spaces should be filled with more proferablo "tine off" runs than the next All American.

In ordor to proserve as many straight blocks as possiblc, Runs Nos. 791 and 792 were entered in Blocks Nos. 86 and 87. A straight run with a roughly oquivalont "time off" was ontered in Block No. 88. The schedule maker then "Jumped" down to the second AII-Anerican block (No. 95) and entered Run No. 794, Train No. 2, "off" at 9:02 P.M.

A check of the Assignment Sheet and the Saturday run sheet at this point revealed 6 open blocks on the one, and 6 available runs on the other. The open blocks call for 6 straight runs on the Assignment Sheet, while there are only 5 straight runs with one 2-piece run on the run sheet. The question is, "Which straight block can best be broisen?" Perhaps the one to be operated by the last All-American man since he is at the tail-end of the seniority list and has least right to exercise a preference. Therefore, Run No. 797, a 2-piece run off at 12:35 A.M., is entered in Block No. 96 Saturday. This completes tho entering of All Amorican runs for Saturdays.

Blocks Nos. 93, 92, 91, 90 and 89 are then filled from the bottom up, listing the 5 straight runs left on the run sheet in reverse order of "time off". A study of the sheet shows that most of these entries register with the Tuesday o Friday runs fairly well.

This completes the Saturday schedule.

Sunday Schedulo

The first seven blocks (Nos. 75-81) are "skipped" on Sunday, as these represent days off.

Since the objective on Sunday is to let the men off as early as possible, and since the first seven blocks are "OFF", it is useless to try to match starting times on this day. Therearly straight runs are simply listed in increasing order of "timo off", beginning with Block No. 82, and running through Block No. 85, the "Jumping off" place ("L" of Figure 57).

There is only one $2-p i e c e$ run on the Sunday run sheet. This run is dropped, to the "Extra" (Ex.) space under "Sunday" to take care of the extra left-over piece resuiting from the division of the total pieces of work for the week by 6 working days (22 "blocks" and 1 piece left over). This is Run No. 791. This removes this run from circulation.

On reaching the column mark "L", the schedule maker seeks to place the next preferable run on the first All American (Block No. 94), since this is a more preferable block than Nos. 86 and following blocks on Tues-day-Friday and Saturday. This is Run No. 784.

The schedule maker returns to the top of the sheet and fills three more straight runs, in increasing order of "time off", in Blocks Nos. 86, 87 and 88. These are Run Nos. 785,786 and 787 , respectively. Having reached "jump" mark "M" of Figure 57, he drops to the second All American block (No. 95) and lists Run No. 788 under "Sunday".

There remain to be filled one remaining All American block (No. 96) and five regular blocks (Nos. 93, 92, 91, 90 and 89 in revörse order). The "owl" (Run No. 795) automatically falls to Block No. 93. The run which finishes at l:13 A.M. (No. 794) is matched with the similer run on Monday and Tuesday - Friday, and entered in Block No. 92.

This leaves four Sunday runs -- No. 789, "off" 9:55 P.M.; No. 790, "off" 10:56 P.M.; No. 792, "off" 12:09 A.M.; and No. 793, "off" 12:25 A.M.

The 12:25 A.M. "off" run (No. 793) is entered in Block No. 91, as it:matches these "off" times best. The 12:09 A.M. "off" run (No. 792) is entered in Block No. 96, the last All American, along with the miscellaneous group of runs falling to the "last man". This completes the All American blocks for Sunday.

The last remaining runs aro ontered in Blocks Nos. 90 and 89 in reverse order of "time off" to complete the Assignnent Sheet.

Checking the Assignment Sheet

Since the Assignment Sheet can be a source of disturbance in employee relations as well as an instrument of good, considerable caro is taken after its preparation to "check and doubz-check" it.

The first check consists in comparing the Assignment sheot back against the run sheets for the four periods of the week. The second check is a thorough review to see that the blocks line up in accordance with policy

FIGURE 58.
TYPED ASSIGNMENT SHEET-
and the verbal asreement. Following these checks, the sheot is sent to the tipist for preparation of copies.

In the first check, each Run Number on the Assignment sheet is checked back against the typed run sheot. Care is taken to see that no "matching" pull-out times nor similar spread pieces have been overlooked in completing the blociss. For the later runs, from Block No. 86 down, the "off" times are checked for the best matches.

In the second check the Assignment Shect is "scanned" across each block to see that the same type of run has been included all the way through. If so, the block is checked off with a red pencil. A re-chock is made to see that proper "preference" has been given the Saturday and Sunday runs as between the "rogular" blocks and the "All American" blocks. It is then checked again to see that oach man has a day off in each block, and that the number of "off" deys of each name check the originally calculated pattern.

A final ro-check is made against the run sheets for the week through the use of an auxiliary "tally sheet". On this tally sheet the run numbers for each schedulo are shown, putting tho greatest number of numbers fron the longest schedule dow the left-hand side. A column is ruled for each day of the week beside the list of numbers, and the spaces in those days on which certain run numbers do not apply are "blocked out" on the tally sheet. This leaves an open spaco for each applicable number.

The recorder next calls each entry on the Assignment Sheet back against the respective run sheets in full detail. The schedule maker crosses out each space on the tally sheet as it is checked, thereby making certain that every run number is used, and that no run number is used more than once in eny da-j. This completes the checking process. The Assignment Sheet is then typod (Figure 58).

Sopies of Assignment Sheot

Sixteen (16) copies of the Assignment Sheet, or onough for two "picks", are prepared in "ditto".

The initial distribution for each pick consists of six copies:
One retained in schedule office for record.
Three issued to the car station or bus garage. One of these is "posted" for the "pick". The other two are for division office information and record.

Two copies are sent to the payroll department. These

FIGURE 59.
RUN GUIDE SHEET -
SAMPLE COMPANY UNDER STUDY.
are used to figure the wages associated with the weck's work for each man, including all allowances, journey timo, and etcetera.

C. The Terminal Sheet

The terminal sheet has bcen discussed in detail in Chapter V, and a copy of the form used by the company shown in Figure 29. The sources of information from which this shect is prepared aro the Headway Order and the Funning Time Shect.

The original typed copy of the Terminal Shoct is filcd in the officc Schodulc Book for ready referonce, and for uso in the preparation of new schodulos or schodule changes.

About twonty-five (25) "ditto" copies of cach Tcrminal Shect are made whon the new schodule is issued. Ten (10) of thesc are sent to the station for tho usc of the street supervisors, who usually copy the terminal times from thesc copies into their pocket note books.

Onc copy goes to the Equipment Division of the station, where it serves to advise mechanical department employees as to the numbors of vehicles needed and the times at which they will be needed. It also shows, by differ ence, how menv vehicles will be available to the mochanical dopartment for inspection, cleaning, etc. at different times of the doy.

One copy gocs to the Railway Earnings Department, where it sorves as the basis on which mileage statistics arc sot up for the individual vchicles, lines, and the systom as a wholc.

A copy of cach Tominal Sheet goes to the Division Superintendent as a matter of rocord. In the case of two lines having "salient" terminals in the business district, two copies of each terminal sheet are given to the sterters in these locations.

D. The Run Guide

The typed Run Guide Shoct is shown in Figure 59. This sheet is based upon information obtainod from:

1. The Running Time Sheet.
2. The Torminal Sheet.
3. The Run Cut Shect

The purpose of the Run Guide is to fully inform the trainmon concerning their runs, so that the operation of cach individual unit in the public stroets may be conducted in accordonco with the official schodule.

The original Run Guide and one copy aro proparod. The original is posted conspicuously in the station lobby for tho convenionco of the trainw men. The copy is sont to the Inspoction Dopartment.

This form contans full information on regular and tripper runs for the platform omployco, such as:
Effective date of schodulo
Relicf points
Run numbers
Train Numbere
Names of terminals
Torminal leaving times
Time points and running time
Time out of station
Time in station
Actual hours
Pay hours
Bonus (spread) pay

On the sample property trainmen are required to copy the data pertaining to their individual runs from the posted copy of the Run Guide. They must pick their terminal times and running times, and calculate for themselves the times at which they are due at time thoir points.

This practice has been adopted because of the frequency and regularity with which new schedules and schedule changes are made by the sample company. It would take a battery of typists, clerks or draftsmen, as the case may be, to keep the men in typed, handwritten or blueprinted copies of their individual schedule data, a cost which the Schedule Department does not feel is justified when weighed against the little time required by one man in copying his own schedule from the Run Guide.

Opinions and practices in this regard vary widely from property

FIGURE 60.
COMPARATIVE SCHEDULE STATEMENT SAMPLE COMPANY UNDER STUDY.

FIGURE 61.
MILEAGE RECORD SHEET-
to property. Some companies issue blueprinted copies of schedule data to each man. Others provide their operator with printed card forms onto which they may copy their schedule data. For current induatry views and practices in this regard, the student of this report is referred to Parts II and III of this project.

F. Comparative Statement

The Comparative Statement, Figure 60, is a very handy condensed comparison between the schedule most recently superseded and the newest schedule in effect. It lists in full for both schedules the following information, together with the increase or decrease resulting from the change:
A. For each of the five principal daily periods

1. Number of vehicles
2. Headwoys in minutes
3. Actual running time
4. Headway adjustment time
5. Total trip time
6. Actual running speed
7. Orerall trip speod
B. Number of regular runs
8. Early straight
9. Late straight
10. Two-piece
11. Three-piece (where applicable)
12. Total regular runs
C. Tripper runs
13. Early trippers
14. Lato trippers
15. Total tripper runs
D. Howrs
16. Reguler run
17. Trippor
18. Total schedule hours
19. Allowed hours
a. To 8:00 hours
b. Time and one-half
c. Journey time
d. Total allowed hours
20. Total schedule and allowed hours

RECAPITULATION OF SCHEDULES

E. Cost

1. Total schedulo and allowod hours
2. Bonus, two-pioce runs
3. Bonus, three-piece runs (where applicablo)
4. Total platform labor cost.
F. Vehicle Mileage
5. Old schedule
6. New schodule

An auxiliary shoet, Figuro 61, is used in computing the mileage figures for the Comparative Statement. It is based upon the multiplication of trips of distances, and "in" and "out" movements by the corresponding distances.

An original and two carbon copies of the Comparative Statement are made in pencil. The original is sent to the Vice President in Charge of Operations as advice as to the nature of the scheculc chance mado and its effects upon headways, costs, and so on. It is filed in a binder in his officc for ready reference as to the basic fundamentals of the schedule in offect.

Of the two pencil carbon copies, one is sent to the Transportation Department for information and reference, and one is retained in the Schedule Department for the record.

F. Recapitulation of Schedules

A final valuable reference record for the information of schedule, planning and transportation officials and the managoment, is the Recapitulation of Schedules in effect, Figure 62.

The information upon which this sheet is bascd is drawn from current schedules.

The recapitulation shows for the system, by lines and types of vehicles, the following pertinent data:

1. Line name

2. Name oi station
3. Schedule number
4. Effective date
5. Units Operated
a. A.M. Peak
b. Basic
c. P.M. Peak
d. Night
e. Owl
6. Headway (Minutes)
a. A.M. Peak
b. Basic
c. P.M. Poak
d. Night
e. Owl
7. Hours
a. Actual
b. Allowed
8. Platform Cost
a. Actual
b. Allowed
c. Total
9. Mileago
10. Speed
11. Regular runs
a. Early straight
b. Late straight
c. Two-piece
d. Throe-piece (wherc applicable)
12. Tripper runs

A summary of schedule allowances, in time and money, is placed at the bottom of the sheet.

The Recapitulation of Schodules is prepared monthly, reflecting conditions as of the end of the month. Nine copies are mado of tho Monday schedule, and eight copies each are made of the Tuesday through Friday, Saturday and Sunday schoduzes. These copies are distributed as follows:

1. President.
2. Vice President in charge of Operations.
3. Goneral Auditor (Monday schedule only).
4. General Superintendent of Railways.
5. Chiof Clerk of Planning Unit.
6. Superintendent of Transportation.

G. Schedule Information for the Riding Fublic

The company does not make a practice of printing schedule data and distributing it to the general public.

An examination of the Recapitulation of Schedules, shows the following headway classifications (see Figure 62).

Peak Headways

$$
\begin{array}{llllll}
1-2 & 2-3 & 3-5: 5-10 & 10-15 & 15-20 & \text { Over } 20 \text { TOTAL } \\
\text { Min. Min. Min. Min. Min. } & \text { Min. } & \text { Min.- }
\end{array}
$$

Street Car Lines	4	3	2	2				11
Trolley Ccauh Lines				1				1
Motor Bus Lines	$\underline{2}$	5	$\underline{6}$	4	4	1	1	23
toral	6	8	8	7	4	1	1	35

Basic Headways

	$\begin{aligned} & 2-3 \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 3-5 \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 5-10 \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 10-15 \\ & \mathrm{Min} . \end{aligned}$	$\begin{aligned} & 15-20 \\ & \mathrm{Min} . \\ & \hline \end{aligned}$	$\text { Over } 20$ Min.	TOTAL
Stroet Car Lines	2	5	3	1			11
Trolley Coach Lines				1			1
Motor Bus Linos	-	1	12	6	1	1	21
TOTAL	2	6	15	8	1	1	33
		Night	Headw				
	$\begin{aligned} & 2-3 \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 3-5 \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 5-10 \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 10-15 \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 15-20 \\ & \mathrm{Min} . \end{aligned}$	Over 20 Min.	TOTAI
Street Car Lines		4	6	1			11
Trolley Coaih Lines			1				1
Motor Bus Lines	-	-	12	8	$\underline{2}$	1	$\underline{23}$
total		4	19	9	2	1	35

From tho above tabulations, it is apparent that the bulk of the servicc operated is at headway intervals which ero sufficiently close as not to require printed time-tables.

The company does duplicate torminal shects for the long-headway outlying lines by the "ditto" process and distributes them to residents of theso areas upon request. Information concerning the transit lines may also bo obtained from the Schedule Department by telophone, and from the Information Booth on the ground floor of the company's main office building.

In addition to having closo headway intervals on most lines, the company changes schedules many times oach year (soe page 9). Such frequent changes would "void" schodules continuously, resulting in confusion and unnecessery expenso.

The reader is referred to Parts II and III of this project for curront industry practices with roforence to the distribution of Schedule information to the riding public.

CHAFTIER VIII
$\frac{\text { NEASUREMENT OF SCHEDUTE EFFIC IENCY }}{\text { BY THE SAMPIE COMPANY }}$

It has been pointed out in tho Introduction, Chapter I, that the question of "What constitutes a good schedule?" has apparently not yet boen enswercd to the completc satisfaction of the transit industry.

Because of the importance of this question of tests of a good schodule and managerial measurements of schodule efficiency, the Administrative Committce of the Opurations Division specified, when undortaking the sponsorship of this project, that it include, in addition to traffic checking and schedule proparation, a study of methode for checking the cfficiency of schodules. Provision has boon made for the appointment of a Roscarch Projoct Cormittee on this subject in the near futuro, such Comrlttce to investigate measurcs of the officiency of schedules and the schedule making process.

The findings of this Research Project Committee will be reportod upon at an appropriate time during the progress of this study. In the meantime, the vicws of the sample company have been cxplored and discussed, and some of them will be set forth below.

At the outset it must be recognized that schedules must meet the requirements of tiree groups whose interests may appear at first glance to differ widcly, narnely, (1) the public, (2) company employees, and (3) the company managenont. A superficial examination of the problem may lead one to belicve that a schedule which best meets the desires of the public or the trainmen will not moot the need of the company, or vice-versa. Careful consideration will reveal the fact that in the long run; however, the community of interests is bost served by a sound and efficiont schedule. The roal test question may prove to bc: "Is the compeny carrying the volume of traffic with tho minimu exponditure for platform labor which is consistont with an attractive sorvico to the public and adequate compensation and working conditions for its omployces?"

The Schedule Dopartment of the sample company points out that there are certain phases of managoment activity which arc beyond its control, and that therofore, the efficiency of the department's operations must be gauged with due rogard for these factors. Those items are:

1. The selection of transit vehicles, with a vicw towarde using the rehicle which is best fitted to and con be most officicntly utilized on each routo. This selection process and the modernization program associated therowith are the rosult of roscarch and planning activitics which fall boyond the scope of routine schedule processes.
2. The limitations imposed by the agreement between the management and the oporating personnel as to wages and working conditions. Opportunities for real increases in efficiency are of ten removed or diminishod by the number and nature of the requirements set forth in the labor agreomont.

It must bo assumed, therefore, in any momentary examination of schedule efficiency, that the vehicle on the line is tomporarily, at least, the vehicle best suited to it, and that the'labor agreement is the very best possible agreenent, temporarily at lcast, which could have been reached by the parties thereto as of its effective date. The Schedule Department must begin at this point to do tho vory best possible job that it can within the existing framework of cquipment, wages and working conditions.

The company feols that overall officiency in a schedule can result only from building it up from the most efficient combination of the elements which $g \circ$ to mako it. Thatis, from the standpoints of both the public and the company, there should be constant checks of passenger loads and running timc, performed as frequently as necessary and as carefully as possible, as a measure of the efficiency of existing schedules and an indication of desirable schedule changes. These processes; if properly followed by attention to schedule changes, will insure the efficiency of the schedule from the standpoint of fitting the service to the load in the right places at the right times, and from the standpoint of operating the fastest schedule consistent with conomy and safety, and without undue hardship on vehicle operators.

If the above processes are also followed by skill and perserveronce in cutting runs for the maximu efficiency consistent with good employee relations, the resulting schedule should be an efficient one. If a line treated as indicated above cannot be made to show a return, or cannot handie the volune of businese with a reasonablo expenditure for platform labor, the indications are that further study may show some justification for turn-back service, or perhaps the desirability of making a change in vehicle size or type.

Tho best measure of the offectivcnese of the Schedule Department in building schedulas from the standpoint of employee rolations is porhaps the periodic "inventories" which are taken of the men's "preferences" for certain types of runs, and of the manner in which the numbers of such runs are reflected on the company's Assignmont Shoets. Any attempt to short-cut or short-circuit these preferences for the ultimate in "doller" efficiency might prove more expensive to the company in the long run by bringing into future labor negotiations domands for more drastic provisions than those which currently exist.

The Schedule Department considers that its "Control Data" - the various tables and charts discussed in the Introduction - are in a sense moasures of the efficiency of the schedule-making process. One of these moasures - the "oarninge por vohiclo hour" or paesenger revonue per
vehicle hour - seems to be the favorite measuring stick of the company manazement in discussing schedule efficiency with the Schedule Departiment.

The "earnings per vehicle hour" figure does not have much significance in comparisons between lines, due to the great variation in riding characteristics, transfer ratios, and etc., from line to line. It does have considereble significance on any one line, however, and can be followed as a rough measure of efficiency in schedule performance if an efficiont schedule is assumed at some point and the subsequent fluctuations in the figure with the passage of time are studied. It must be looked upon, however, as a variable rather than as a constant measure, as tho figure is automatically "distortcd" on the high side by the equipnent limitations of the era of wartime prosperity and on the low side by the limting headway considerations characteristic of the depression 30 's.

If the "earnings per vehicle hour" from month to month on a given line remains high and "in line", the Schedule Department hears relatively little about routine schedule matters from the management. When this figure for a line or series of lines starts to fall, howevor, the management begins to talk schedule efficiency with the Schedule Dopertment. For this reason, the Schedule Department watches this measure rather closely, charting it by lines as shown in Figure 5, Chapter I.

The "switching" report and other reports of the Transportation Division serve as "indicators" rather than "measures" of the efficiency of a schedule from the standpoint of "schedule adherence" in actual operation, and point the way towards a re-examination of conditions through the load check and riding check.

The company considers it rather difficult to set up criteria which would serve as measures of efficioncy applicable to all lines of the system gencrally. The ratio of base to peak riding, for example, would vary widcly due to the many factors which influence the riding characteristics of a line. On the other hand, the ratio of "pay" hours to "actual" hours, if studied as a trend, might reflect the officiency of the run cutting procoss as a part of the overall schedule job. The figure of "vehicle miles per revenue passenger" by years might be of considerable significance with a constant system pattem and a constant vehicle sizc and type, but would loso that significance in the face of any radical change in these itcms.

In closing its discussion of measures of schedule efficiency, the Schedule Dopartment re-emphasized its opinion that the basis for building efficiont schedules lies in building efficioncy into each step of the process. The public relations, cmployee relations and management aspocts must all be taken into account continually. Othervise, a schedulo which is most efficient as to "earnings per vehiclo hour" may be built which, while it would carry the people for tho loast oxpenditure for platform labor, might discourage riding or give rise to a loss in efficiency by etimulating potential labor difficulty. Each company will undoubtodly havo its own peculiar local conditions to face in this rospoct.

The student of this report is referred to Parts II and III of this project, as well as to the work of the Research Project Committee to be appointed for this subject, for other viowpoints regarding measures of the efficiency of schedules and tho schedule naking process. These later reports will be distributed to the member companies of the Association as soon as they have boon complotod.

APPENDIX A

GLOSSARY OF SCHEDULE TERMS

USED BY

SAMPLE COMPANY UNDER STUDY

GROUP I - GENERAL

Control Data.

Headway.

Limiting Headway.

Line. A route or combination of rotutes.

Loading Standard. The load (in passengers) to be used for a given size and type of vehicle during different periods of the day in deterrining the headways to be operated during those periods. The loading standard is sometimes expressed as the ratio of the "schedule" load to the seating capacity of the vehicle.

Maximun Load Point. That point along a transit route at which the maximum loads on vehicles tond to accumulate.

Operating Station. See "Station".

Passenger Loed. The number of passengers carried on each vehicle past the point or points of heaviest load.

Passenger Load Check. A check conducted for the purpose of obtaining data on passenger loads. (See Chapter II).

Platform Labor Cost. The total cost for the services of trainmen or bus operators, including all bonuses, allowances, etc.

Relief Point. | A designated point on the route where operators or |
| :--- |
| crews may be scheduled to begin or terminate the |
| whole or sone part of their runs. |

Riding Check. \quad Sec "Running Time Check".

Round Trip. \quad\begin{tabular}{l}
The two-way operation of a vehicle from a specified

terinus back to that same terminus.

\quad

Route.
\end{tabular}

Terminus. Efther ond of a route.

Time Point. A designated point on a route established for the control or squalization of headways.

Traffic.

Train Nurbor.

Trip.

Try-Out Schedule.

Vehicle.

Assignment Sheet.

Comparative
Statement.

Headway Order.

Passenger Load Surmary.

A form used for grouping runs into six-day assignments for selection by trainmen in accordance with their seniority. (See Figure 58).

A shect giving a condensed comparison of major schodule do.ta between the most recently superseded schedule and the newest schedule in affect. (Seo Figure 60).

A form used by the Superintendent of Schedules or the Chief Schedulo Maker for prescribing the "headways" or amounts of service to be included in a new schedule. (Soc Figure 25 A \& B).

A form, also callod "Recapitulation of Passenger Checks", for the summarization and analysis of passenger load data. (Sce Figure 14).

Recapitulation of Schodules.

Run Cut Sheet.

Run Guide.

Run Sheot.

An information sheet containing basic schedulo data for each line of tho system, as well as systor totals and a surmary of schedule allowances in "time" and "money". (Soe Figure 62).

A form used for the performance of all steps in tho procedure of "run cutting". (See Figure 45).

A typed form, posted at the station, which furnishes operators with all data essential to the performance of their scheduled runs. (See Figure 59).

Running Time Sheet. A form used for setting up running time data by timo points and running time periods for the guidance of schodule makers. (See Figure 22).

Running Time Summary. A form or forms used for the sumarization and analJsis of running time data. (See Figuro 18 and 21.)

Subdivision Shcet. An auxiliary form showing "in", "out", "total", and "relief" times for trains, utilized in the process of run cutting. (See Figure 41.)

Terminal Layout Shoet.

A form on which the schoduled departure times of trains from the line temminals are laid out prior to final adjustment. (See Fisure 37.)

Terminal sheet.
The final "tirietable" of vehicle departures from the line torminals which is used, in conjunction with the time points and running time, to govern the operation of vehicles ovor the public atroets. (See Figure 29.)

GROUP III - TIME

Allowed Timo.
Bonus time paid for hours not workod in order that the total time paid for a run may be equal to the minimum time gueranteed; such as "time allowed to eight hours" on a regular run, time allowed to $1 \frac{1}{2}$ hours on a minimum tripper run, and time and one-half on a tripper run.

Bonus Time. See "Allowed Time"; see also 'Overtire", "Spread Time" and "Spread Pay".

Drop Back Time.
Head.สay Adjustrent Time.

Journey Tine.

Layover Time.

Overtime.

Pull-out Time.

Pull-in Time.

Peonvery Time.

Relief Tine.

Round Trip Time.

Running Time.

Spread Time.

Swing Time.

Trip Time.

See "Leyover Time".
Sce "Layover Time".

A time allowance, paid for at the straight tine rate, which pormits a conductor or operator who is relieved at the ond of his day's work at a point distant from his station to return to the station to turn in his trip shects, transfers, etc.

The olapsed tirle botween vohicle orriving and leaving times at a terninus.

Bonus time paid for hours worked in excess of those specifiod for any given regular run, paid for at time and one-half.

The time assigned for the movement of a vehicle from the station to its first schedulod terninus.

The time assigned for the novement of a vehicle fron its last bcheduled terninus to the station.

Seu "Layover" Time.

The times, specified on the Run Guide, at which operators or crews relieve and are relieved at spocified relief points.

The time required for a vehicle to make a completa round trip, including layover time.

The time assigned for the movement of a vehicle over aroute. (Lajover time not included.)

The elapsed tine between the beginning and end of a two - (or three -) piece run.

The elapsed timc between the portions of a two - (or three -) pieco run.

The running time required to complete a one-way trip.

Speed.	The distance moved per unit of time. (Distance in miles divided by time in hours equals speed in miles per hour.)
Running Speed.	The arerage speed maintained between terminals, exclusive of layover time. It may be calculated by individual trips, by running time periods, or for the entire schedule.

Overall Trip Speed. The average speed maintained per round trip, including layover time. It may be calculatod by individual trips, by running time poriods, or for the entire schedule.

GROUP V - RUNS
"All American" Run. A "block" of 6 days' work on the Assignment Sheet made up of regular runs not worked by rogular men on their days off.
A.M. Part Trip. Any part trip occurring in the A.M. period.
A.M. Tripper. A tripper operated for some portion of the period (in general) Detween 6:00 A.M. and 9:00 A.M.

Block Number. A number associated with the six piuces of work to be performed by a trainman or operator during a specific week, as indicated on the Assignment Sheet.

Early Straight Run. A straight run which operates during the morninc hours, with "time off" not lator (in general) than 3:00 P.M.

Early Two-Piece Run. A two-piece run which finishes work before 9:00 P.M.

Extra Run. A trip or combination of trips which is not scheduled. (HOTE - There aro rulatively few such trips on the sample property. Practically every vehicle movement is scheduled.)

Late Straight Run. A straight run which operates during tho late after-
noon and the night hours, with "timo off" not later (in general) than 2:00 A.M.

Late Two-Picce Run. Owl Run.

Part Trip.
P.M. Part Trip.
P.M. Tripper.

Regular Run.

Run Cutting.

Run Number.

Spread Pay.

Spread Bonus.

Streight Day Run.

Straight Run.

A two-piece run which finishes work at 9:00 P.M. or lator.

A run which operates during the late night and early morning hours, until the rosumption of regular servico with the next'day's schedule.

A trip added to the boginning or end of a rogular run to correct a situation, and which the regular man has preference in working at time and one-half, unless the extra time added excoods one hour and thirty minutes.

Any part trip occuring in the P.M. period.

A tripper operated for some portion of the period (in general) between 3:30 P.M. and 6:30 P.M.

A scheduled combination of trips whoso total time will oqual, excocd or guarantee payment for the number of hours specified as aday's work.

Tho process of cutting a terminal shect into "runs" for assembly into "blocks" of work for the operating porsonnel.

A number associated with the pioce of work to be porformod by a trainman or operator on a specific day, as indicated on the Run Guide.

The extra or "bonus" pay associated with various amounts of spread tine for two - (or three -) piece runs having a "spread" of more than cleven and less than fourteen hours.

See "Spread Pay"; sce also "Sproad Time".

A straight run which operates during the late morning and tho afternoon hours, with "time off" not later (in gonoral) than 9:00 P.M.

A reguler run in which the trips follow one another without interruption.

Swing Run.	Sce "Two-Piece Run"; sce also "Three-Piece Run".
Three-Piece Fun.	A regular run in which the work is not continuous, but is diviced into three parts with two intervals botwoen thon which are not paid for cxcopt as provided for as "sproad pay".
Trippor Run.	A scheduled coribination of trips whose total time is less than that specificd as constituting a regular run.
Two-Piece Run.	A regular run in which the work is not continuous, but is divided into two parts with an intorval between them which is not paid for excopt as provided for as "spread pay".
	GROUP VI-COMPARATIVE TERMS
Revonue Passengers.	Passongers who pay the spocifiod cash fare upon boarding a vehicle.
Transfer Passengers.	Passengers who surrender a transfer upon boarding a vehicle.
Total Passengers.	All passcngers carricd, including "frec" passengers.
Routo Milc.	A one-way distance of ono nilc measured between the two torminols of a route.
Vehicle Mile.	The operation of a transportation vehicle over a distance of onc milc.
Vohiclo Howr.	The operation of a transportation vehicle for a period of one hour.
Earnings pei	A dorived statistic obtained by dividing the passonger
Vehicle Hour.	reverue for a line (or the systom) by the corresponding number of vohicle (actual) hours.

APPEIDIX B

METROD OF MAKING SCHEDUIE "CHANGES"

SAMPLE COMPANY UNDER STUDY

In the main text of this report, page 9, it was indicated that the sample company made 575 minor changes in its schedules during the calendar year 1946, in addition to the preparation of 479 entire new schedules.

The development of a new schedule from start to finish was traced in the body of the report. In this appendix the method of making a minor change in an existing schedule will be described.

It is customary for the Chief Schedule Maker to review, at intervals of two weeks, all the Passenger Load Summary Sheets for the system. Such a review was made of the summary for the City Park bus line immediately after the April 25^{t} h load check was entered. A study of the summary sheets indicated the need of additional semvice in the A.M. and P.M. Peak periods, as well as a reduction in service in the late afternoon just preceding the peak. An examination of the running time sumnary sheets indicated the possibilities of saving a minute in the running time in each of several daily periods. The schedule maker decided to build a complete new schedule just as soon as possible to correct the bad conditions and to take advantage of the good conditions which had developed. The situation developing in the P.M. Peak period between 5:08 and $5: 38$ was so acute, however, as to warrant imediate correction pending construction of the new schedule. A minor scheduJe change in the P.M. Peak period was, therefore, decided upon.

The need for a schedule change might also have boen called to the attention of the Chief Schedule Moker betwoen his review periods by special reports or "complaints" from the Transportation Division.

Consider the segment of the Passenger Load Summary shown in Figure 63. The loads between 5:17 and 5:29 P.M. are particularly heavy, averaging 57-68-63 on the first three days recorded (the schedule maker is studying this sheat at noon of April 26, 1945). He decides to add a F.M. Tripper to the schedulo so that it will relicve the heavy spot just after 5:15, theroby taking care of the situation temporarily until the new schedule can be placed in effect.

Examining the load summery and utilizing a column off to the right to record his pronosed headways, the schedule maker makus the following tentative decisions:

1. To leave the 5:08 and 5:10 F.M. inner terminal times as they are.

OF PASSENGER CHECKS

EDULE DIVISION
TurgDAI 20 FRIDAT
SCHEDULE

2. To reduce the next hoadway intorvel from $2 \frac{1}{2}$ to 2 minutes, with an innor terminal time of $5: 12$ instead of $5: 12 \frac{1}{2}$. This will tend to lizhten the load on this trip.
3. To hold the next 2 minute interval, which neither helps nor hurts the situation, giving an inner terminal tine of 5:14.
4. To cut tho noxt headway interval from $2 \frac{1}{2}$ to 2 minutes, thereby rolieving the pressure on that vohicle, and rosulting in a now terminal time of $5: 16$ instead of 5:17.
5. To reduce the next headway interval from $2 \frac{1}{2}$ minutes to 2 minutos, rosulting in a now terminal time of 5:18 P.M. This might be achicved in one of two wayscithor by changing the inncr torminal time of Train No. 5 from 5:19 $\frac{1}{2}$ to $5: 18$ for that trip, a cut of $1 \frac{1}{2}$ minutes in running time; or, by introducing the new tripper bus at that point. Since, in the light of his experience, the Chief Schodulo Maker considcrs a cut of $1 \frac{1}{2}$ minutes at that time of day too drastic, he introduces in additional vehicle with terminal time ("x") 5:18 P.M. into tho line of vehicles.
6. To hold the noxt hoadway interval to 2 minutes or a terminal time of 5:20.
7. To change the noxt headway intorval from $2 \frac{1}{2}$ to 2 minutes, or a torminal time of 5:22.
8. To change the next headway interval from $2 \frac{1}{2}$ to 2 minutes, or a terminal time of 5:24. At this point the present and proposed inner terminal times aro identical ($5: 24 \mathrm{P} . \mathrm{M}_{\mathrm{s}}$), indicating that the effect of the extra bus has boon "used up" and that the lino of cars is "back on time".

At this point an oxamination of the load sunmary shows that there aro still two hoavy loads, followod by a scries of loads which aro just about right, or, perhaps, a littlc "light". Thesc two heavy loads are both on $2 \frac{1}{2}$. minute headways, and thoy have not bcen helped by the oxtra trippor. Thoy are followed by some buses oparating on 2 minutc hoadways with lightor loads (terminal times 5:31 P.M. and 5:35 $\frac{1}{2}$ P.M.) The Chief Schedule Maker, therefore, makes the following additional decisions:
9. To make the next two headway intervals following 5:24 2 rinute intervals, or terminal times of 5:26 and 5:28. This involves "cuts" in running time of $\frac{1}{2}$ minute and I minutc respectively, which the schedule makor. believes to be possiblc oî attainnent on those trips.
10. To add $\frac{1}{2}$ minute to the next headway interval, resulting
in a terminal time of $5: 30 \frac{1}{2}$ instead of $5: 31$.
11. To hold the next headway interval at $2 \frac{1}{2}$ minutes, eiving a terminal time of $5: 33$ instead of $5: 33 \frac{1}{2}$
12. To add $\frac{1}{2}$ minute to the next headway interval, resulting in a terminal time of 5:35 $\frac{1}{2}$ P.M., which is identical with the present terminal time.
13. To leave the next terminal time ($5: 38$ P.M.) and succeeding terminal times exactly as they aro in the present schedule.

The Chief Schedule Maker then turns the Load Sumary Sheets marked with the proposed headways over to a schedule maker with instructions to work the extra P.M. tripper into the schedule. To perform this duty, the schedule maker to whom the task is assigned obtains copies of the existing Terminal Sheet, Running Time Sheet, and Run Sheet.

> Schedule Change "Work Sheut"

The Schedule maker takes a blank sheet of paper and heads it up with the existing schedule number, the line name, type of schedule, and effective date of the change. The abbroviation "P.M." is placed on the sheet to qualify the "times" to be listed. Columns are provided for the run number, train number, "out" time, the times at each terminal (outer and inner", the "in" time, and the new elapsed "times" for each train affected by the schedule change. (See Figure 64).

It is customary to list on the work sheet one time at the beginning of the series which is to remain identical after the schedule change, and one time at the end of tho scries which is to remain unchanged. Care is taken in setting up the serius of terminal times to see that each trip gets the right time at each end of the line, with duc consideration for the running time.

The schedule maker starts to consider the 5:08 P.M. time, Train No. 18, but does not list it because it will not be changed. The 5:10 P.M. time, Train No. 7, is listed because it immediately procedes the first changed time. This time is placed in the innor terminal column (Dauphine and Canal) and its time at the outor terminal at the beginning of this inbound trip is figured back fron the inner terminal time and the inbound running time (5:12 minus 17 minutes equals $4: 55$, which checks) and is entored in the Dumaine and Alexander column of the work sheet. Train No. 2, (5:14) is entered next, and it is found necessary to decrease the outer terminal time by $\frac{1}{2}$ minute ($4: 57$ instead of $4: 57 \frac{1}{2}$ P.M.) to correspond with the new inner terminal time and the running time.

The next entry is Train IVo. 4, 5:16 at Dauphine and Canal. It is necessary to cut the outer terminal time a full minute (from 5:00 to 4:59) in

$$
\begin{gathered}
\text { CITY PARK LINE } \\
\text { TUESDAY TO FRIDAY } \\
\text { EFF. } 4-26-46 \\
\text { PM. }
\end{gathered}
$$

RUN TRAIN OUT DUB, \&ALEX. DAUPH.\&GANAL IN TIME

PM. TRIPPER ADDED

TOTAL TIME 166:26
order to meet the running time and new inner terminal time. A check of the previous outbound trip reveals the following: This previous trip leaves the inner terminal at 4:37 P.M. and requires 22 minutes running time plus layover time in order to be ready for his next trip. This makes hin available at $4: 37$ plus $0: 22$, or $4: 59$ P.M., which is identical with the new outer terminal time required. The outer terminal time for the trip in question can, therefore, be cut a full minute without cutting the running time and layover time of the previous trip.

A similar examination of Train No. 5, shows that this vehicle could not reach the inner terminal at $5: 18$ ($1 \frac{1}{2}$ minutes sooner than the present $5: 19 \frac{1}{2}$) without cutting into his running time and layover time by a full minute. This the schedule maker considers to be too drastic a cut at the height of the peak, which checks thi judgment of the Chief Schedule Maker in inserting the additional tripper at this point. So a new vehicle (designated as Train No. 19, the next "unused" number on the terminal sheet) is pulled out of the bus garage to meet the 5:18 Dauphine and Canal time. This vehicle must leave the outer terminal at 5:01 P.M., as a running time of 17 minutes inbound is required.

This process of building up the outor terminal times to match the new inner terminal times which go with the pioposed headways is continued through the ontire rangu of proposed now headways as noted on the load summary. In each casc the chanee in outor torminal time and the "cut" necessary to make this change are carcfully studiod to see whether the needed reduction in "running time plus layover time outbound" is practicable. The list ends with Train No. 13, which does not require a chang from the existing schedule.

The first check of the work sheet (Figure 64) consists in rechecking to sco that all vehicles listod have a running time of 17 minutes between the outer terminal and the innor terminal.

Thu second chock of tho work shect consists in checking the inner terminal colum of times back against the "proposed hoadways" column on the load summary shoet.

The third check is to put in the "margin times" for the noxt inbound trip to sue whether the vohiclus get back to the outer terminal in sufficiont tine (zlus layovor) to mect the noxt inbound trips without being cut too much. This column of "nargin timus" is noted temporarily to the left of the new column of inner terminal times.

Train No. 7 , for cxamplc, requires 18 minutes running time plus 4 minutes layover, or 22 minutes in all, to bo ready for its next inbound trip from the outor terminal. 5:10 P.M. plus 0:22 equals 5:32 P.M., which is notod in the "margin time" column. A stuady of the terminal sheet (Figure 16) shows that the next trip of this train leaves the outer terminal at exactly 5:32 P.M. Since tho vohicle is roady for this trip right on time, no "cut" in time is necessary. Similarly, Train No. 1 is available at 5:34, actually
leaves at 5:34 $\frac{1}{2}$ - no cut; Train No. 2 is available at 5:36, actually leaves at 5:361 - no cut; Train No. 4 - available 5:38, leaves 5:39-no cut. Train No. 19, the added tripper, gets back to the outer terminal at (5:18 plus $0: 18$ running time without layover) $5: 36 \mathrm{P} . \mathrm{M}$. and is roady to roturn to the bus garage. This time (5:36) is notcd on the work sheet to the right of the outer terminal time ontry for Train No. 19. Train No. 5 - available at 5:42, leaves 5:4l- $\frac{1}{2}$ - a $\frac{1}{2}$ minute cut decmod practicable by the sciedule makor; Train No. 6 - available and actual times of 5:44-no cut; Train No. 8 - available 5:46, leaves 5:46 $\frac{1}{2}$ - no cut; and so forth. All trains on the work sheot moet this test O.K.

The next step is to place the "in" and "out" times for the new tripper on the work sheet. The "in" and "out" timos required are both 8 minutes, which requires tho extra trippor to pull out of the station at $4: 53$ P.M. to be ready for its 5:01 P.M. inbound trip, and pormits it to pull into the station at 5:44 P.M., aftor its 5:36 arrival back at the outer torminal. Tho total time of the trippor - 5:44 minus 4:53, or 51 minutes, is entered in the "timo" column of the work sheet opposito Train No. 19.

A chock is noxt made to see whether the pull out times of any of tho regular veniclos havo to be adjustod to moct the now outer terminal times imposed by the new hoadways. The nearost possible chance for changc is presented by Train No. 2, which is scheduled to leave Dumainc and Alexander Strects at 4:57 P.M. instcad of 4:57 $\frac{1}{2}$ P.M., an apparent cut of $\frac{1}{2}$ minutc. The original pull-out time for this vehicle was 4:49, which, plus 0:08, gave a torminal "available" time of $4: 57$ against a torminal lcaving time of $4: 57 \frac{1}{2}$, or $\frac{1}{2}$ minute "locway" was given the oporator so that he could lcave the bus garage on the even minutc. Tho new terminal leaving time is $4: 57$, which allows a full \& minutes from the station to the outcr terminal without changing the "out" time of 4:49 P.M. All other pull-out times checled out O.K.

A check of the "pull in" times shows that the first one occurs at 5:55 P.M., which is boyond the span of the proposed schedule change. No changes in pull in times arc, thercfore, necossaiy.

A new run number, No. 805, (the next consocutive number after the last ons used on the Fun Cut Sheet), is assigned the extra tripper, and the run numbors are listed on the work shoet. A chock is mado of the "reliof times" shown on the Run Cut Shect as the run numbers are entered on the work shoct to determine whether any of thein need to be changod. An oxamination, run by run, reveals the fact that all runs complctoly "span" the time of the proposcd schedulo change, so that there are no changes in rolief times nocossary as the result of the proposcd now headways and terminal times.

The now P.M. tripper is now listed on the work sheet as a "P.M. Tripper Added", and the following portinent data -- based upon Run Guide

He. Leo Peyret,
Station Master
Canal Bus Station.
Dear Sir:-
Please make the following changes on the City Park Bus
Ifine, Tuesday to Friday Schedule, Ho. 7649, Effective April 26, 1946.

Run	Tr.	Out	Dumaine \& Alexander	Dauphine \& Canal	In	Time
794	7		453			
784	1		455	512		
797	2		457	514		
785	4		459	516		
805	19	453	501536 IN	528	544	51
795	5		503	520		5
790	6		505	522		
786	8		507	524		
791	9		509	526		
787	10		511	528		
804	11		$513 \frac{1}{2}$	$530 \frac{1}{2}$		
793	12		516	533		
788	13		5183	5351		

P.M. TRIPPER ADDED

TOTAL TIME 166:26

Fours very truly,
Manager, Schedule Dirision

FIGURE 65.
TYPED NOTICE OF SCHEDULE CHANGE SAMPLE COMPANY UNDER STUDY.
and Run Sheet headings - aro shown bolow the list of terminal tines:

"P.M. TRIPPER ADDED								
$\begin{aligned} & \text { RUN } \\ & 805 \end{aligned}$							ACTUAL	PAY
	TRAIN	TERMINALS				IN	TIME	TIME
	19	DUMAINE-AIEXATJIER	OUT 453	501	536	544		-
		DAUPEINE-CANAL		518			0:51	1:30
TO'TAL TIME 166:26"								

The pay time of $1: 30$ hours shown above is, of courso, based upon the minimum trippor pay timo of one hour and 30 minutes.

The work shoot is thon recopicd by the schedule typist in the form of a notification of change (Scc figuro 65). Sovontocn copies are usually made, and these are distributed as follows:
Division Superintendent 1
Station Mastor 1
Supervisors 6
Paymaster 1
Miluage Clork (Railway Earnings Department) 1
Equipmont Department 1
Inspection Dopartment 1
Extras 5

The typist corrects the Torminal Shect and tho typed Run Sheet of the schedule in effect in accordance with the change, and notes the nature and effectivo date of tho change on these record forms.

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

This report is being distributed through the U.S. Department of Transportation's Technology Sharing Program.

DOT-I-82-23

TECHNGLIEY SHARING

A Program of the U.S. Department of Transportation

